5 STAR AI.IO

TOOLS

FOR YOUR BUSINESS

HELLO & WELCOME TO THE

5 STAR AI.IO

TOOLS

FOR YOUR BUSINESS

Starcoder LLM

Generate Your First Professional AI Starcoder LLM  PROJECT & Get Your BUSINESS 2 Another Level. 


Starcoder LLM: The Ultimate Language Model for Developers


Starcoder LLM: The Ultimate Language Model for Developers


Taking Your Existing Business With AI Starcoder LLM

StarCoder: How to use an LLM to code



StarCoder - The LLM to make you a coding star?



Hugging Face Releases StarCoder, the Next-Generation LLM for Seamless Code Generation

LIKE

DISCUSS

PRINT

MAY 11, 2023 2 MIN READ

by


Hugging Face and ServiceNow have partnered to develop StarCoder, a new open-source language model for code. The model created as a part of the BigCode Initiative is an improved version of the StarCoderBase model trained on 35 billion Python tokens. StarCoder, is a free AI code-generating system alternative to GitHub’s Copilot, DeepMind’s AlphaCode, and Amazon’s CodeWhisperer.

StarCoder was trained in over 80 programming languages as well as text from GitHub repositories, including documentation and Jupyter programming notebooks, plus it was trained on over 1 trillion tokens and with a context window of 8192 tokens, giving the model an impressive 15.5 billion parameters. This has outperformed larger models like PaLM, LaMDA, and LLaMA, and has proven to be on par with or even better than closed models like OpenAI’s code-Cushman-001.

StarCoder will not ship as many features as GitHub Copilot, but with its open-source nature, the community can help improve it along the way as well as integrate custom models, said Leandro von Werra, one of the co-leaders on StarCoder to TechCrunch.

The StarCoder LLM was trained using code from GitHub, therefore it might not be the optimal model for requests like requesting it to create a function that computes the square root. Nevertheless, by following the on-screen instructions, the model might be a helpful technical aid. Tokens are used in the model's Fill-in-the-Middle method to determine the prefix, middle, and suffix of the input and output. Only content with permissive licenses is included in the pretraining dataset that was used to choose the model, enabling the model to produce source code word for word. However, it is crucial to follow any attribution requirements and other guidelines set forth by the code's license.

The new VSCode plugin is a useful tool to complement conversing with StarCoder during software development. Users can check whether the current code was included in the pretraining dataset by pressing CTRL+ESC.

While StarCoder, like other LLMs, has limitations that can result in the production of incorrect, discourteous, deceitful, ageist, sexist, or stereotypical information, the model is available under the OpenRAIL-M license, which sets legally binding restrictions on its use and modification. Also, researchers evaluated StarCoder's coding capabilities and natural language understanding by comparing them to English-only benchmarks. To expand the applicability of these models, additional research into the effectiveness and limitations of Code LLMs in various natural languages is necessary.

AI-powered coding tools can significantly reduce development expenses while freeing up developers to work on more imaginative projects. According to a University of Cambridge research, engineers spend at least half of their time debugging rather than actively working, which is projected to cost the software industry $312 billion annually.

About the Author


Daniel Dominguez

Daniel is an engineer with experience in software product development for companies ranging from Silicon Valley startups to Fortune 500. He is passionate about cloud computing to deliver innovative software solutions. In addition to software product management, Daniel is also involved in artificial intelligence and machine learning projects.

Show more

This content is in the AI, ML & Data Engineering topic


Creating a Coding Assistant with StarCoder


srush

Sasha Rush

If you’re a software developer, chances are that you’ve used GitHub Copilot or ChatGPT to solve programming tasks such as translating code from one language to another or generating a full implementation from a natural language query like “Write a Python program to find the Nth Fibonacci number”. Although impressive in their capabilities, these proprietary systems typically come with several drawbacks, including a lack of transparency on the public data used to train them and the inability to adapt them to your domain or codebase.

Fortunately, there are now several high-quality open-source alternatives! These include SalesForce’s CodeGen Mono 16B for Python, or Replit’s 3B parameter model trained on 20 programming languages.

The new kid on the block is BigCode’s StarCoder, a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed). With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via multi-query attention, StarCoder is currently the best open-source choice for code-based applications.

In this blog post, we’ll show how StarCoder can be fine-tuned for chat to create a personalised coding assistant! Dubbed StarChat, we’ll explore several technical details that arise when using large language models (LLMs) as coding assistants, including:

As a teaser of the end result, try asking StarChat a few programming questions in the demo below!

⭐ StarChat Playground 💬


💻 This demo showcases an alpha version of StarChat, a variant of StarCoderBase that was fine-tuned on the Dolly and OpenAssistant datasets to act as a helpful coding assistant. The base model has 16B parameters and was pretrained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).

📝 For more details, check out our blog post.

⚠️ Intended Use: this app and its supporting model are provided as educational tools to explain large language model fine-tuning; not to serve as replacement for human expertise.

⚠️ Known Failure Modes: this alpha version of StarChat has not been aligned to human preferences with techniques like RLHF, so the model can produce problematic outputs (especially when prompted to do so). Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect. For example, it may produce code that does not compile or that produces incorrect results. It may also produce code that is vulnerable to security exploits. We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking. For more details on the model’s limitations in terms of factuality and biases, see the model card.

⚠️ Data Collection: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do NOT share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.

You agree to the storage of your prompt and generated text for research and development purposes:

Store data

System Prompt▼

Chat

SendClear chat

Parameters▼

Examples

How can I write a Python function to generate the nth Fibonacci number?

How do I get the current date using shell commands? Explain how it works.

What's the meaning of life?

Write a function in Javascript to reverse words in a given string.

Give the following data {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'], 'Age':[20, 21, 19, 18], 'Height' : [6.1, 5.9, 6.0, 6.1]}. Can you plot one graph with two subplots as columns. The first is a bar graph showing the height of each person. The second is a bargraph showing the age of each person? Draw the graph in seaborn talk mode.

Create a regex to extract dates from logs

How to decode JSON into a typescript object

Write a list into a jsonlines file and save locally

You can also find the code, dataset, and model used to produce the demo at the following links:

To get started, let’s take a look at how language models can be turned into conversational agents without any fine-tuning at all.

Prompting LLMs for dialogue

As shown by DeepMind and Anthropic, LLMs can be turned into conversational agents through a clever choice of prompt. These prompts typically involve a so-called “system” message that defines the character of the LLM, along with a series of dialogues between the assistant and a user.

For example, here’s an excerpt from Anthropic’s HHH prompt (a whopping 6k tokens in total!):

Below are a series of dialogues between various people and an AI assistant.

The AI tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble-but-knowledgeable.

The assistant is happy to help with almost anything, and will do its best to understand exactly what is needed.

It also tries to avoid giving false or misleading information, and it caveats when it isn’t entirely sure about the right answer.

That said, the assistant is practical and really does its best, and doesn’t let caution get too much in the way of being useful.


-----


Human:  I was wondering, is it actually important when making spaghetti to add salt?


Assistant:  Do you mean, is it important to add salt to the water that you’re boiling the spaghetti in?


Human:  Yeah


Assistant:  It’s usually recommended to bring out the flavor of the pasta.  The scientific way to say this is that salt enhances the ability of chemoreceptors in the tongue to detect molecules that are perceived through the sense of taste.


Human:  But I mean I’m going to use sauce and stuff, so does it matter?


Assistant:  It sounds like you’re skeptical.  Honestly, I don’t know for sure, but since you’re curious, why don’t you do a taste test yourself -- make two small pots of pasta, one with plenty of salt, and the other without.  Then taste the noodles and see which one you prefer?  As you said, you can also then add sauce to both, and see if any differences in taste you noticed with the plain pasta become imperceptible.  It should be a fun experiment!


-----


...


-----


Human: {USER QUERY}


Assistant:


As we can see, the first part of the prompt “Below are a series...” corresponds to the system message and specifies that the assistant should have characteristics like “helpfulness” and “politeness”. The dialogue examples then condition the model to follow the multi-turn format of a conversation. When a user asks a question, the whole prompt is fed to the model and it generates an answer after the Assistant: prefix. The answer is then concatenated to the prompt and the process repeated at every turn.

Somewhat surprisingly, this technique also works for StarCoder! This is enabled by the model’s 8k token context length, which allows one to include a wide variety of programming examples and convert the model into a coding assistant. Here’s an excerpt of the StarCoder prompt:

Below are a series of dialogues between various people and an AI technical assistant.

The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble-but-knowledgeable.

The assistant is happy to help with code questions, and will do its best to understand exactly what is needed.

It also tries to avoid giving false or misleading information, and it caveats when it isn’t entirely sure about the right answer.

That said, the assistant is practical and really does its best, and doesn’t let caution get too much in the way of being useful.


The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).

The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.


-----


Human: Write a function that takes two lists and returns a list that has alternating elements from each input list.


Assistant: Sure. Here is a function that does that.


def alternating(list1, list2):

   results = []

   for i in range(len(list1)):

       results.append(list1[i])

       results.append(list2[i])

   return results


Human: Can you write some test cases for this function?


Assistant: Sure, here are some tests.


assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]

assert alternating([True, False], [4, 5]) == [True, 4, False, 5]

assert alternating([], []) == []


Human: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.


Assistant: Here is the modified function.


def alternating(list1, list2):

   results = []

   for i in range(min(len(list1), len(list2))):

       results.append(list1[i])

       results.append(list2[i])

   if len(list1) > len(list2):

       results.extend(list1[i+1:])

   else:

       results.extend(list2[i+1:])

   return results


-----


Here we can see how a well crafted prompt can induce coding behaviour similar to that observed in ChatGPT. You can find the full prompt here and chat with the prompted StarCoder on HuggingChat.

One major drawback with dialogue-prompting is that inference can be very costly: every turn of the conversation involves thousands of tokens which will quickly burn a hole in your wallet!

The obvious alternative is to fine-tune the base model on a corpus of dialogues and enable it to become “chatty”. Let’s take a look at a few interesting datasets that have recently landed on the Hub and are powering most of the open-source chatbots today.

Datasets for chatty language models

The open-source community is rapidly creating diverse and powerful datasets for transforming any base language model into a conversational agent that can follow instructions. Some examples that we have found to produce chatty language models include:

For the purposes of this blog post, we’ll use the OpenAssistant dataset to fine-tune StarCoder since it has a permissive license and was produced entirely by humans.

The raw dataset is formatted as a collection of conversation trees, so we’ve preprocessed it so that each row corresponds to a single dialogue between the user and the assistant. To avoid deviating too far from the data that StarCoder was pretrained on, we’ve also filtered it for English dialogues.

Let’s start by downloading the processed dataset from the Hub:

from datasets import load_dataset


dataset = load_dataset("HuggingFaceH4/oasst1_en")

print(dataset)


DatasetDict({

    train: Dataset({

        features: ['messages'],

        num_rows: 19034

    })

    test: Dataset({

        features: ['messages'],

        num_rows: 2115

    })

})


As we can see, the dataset contains around 21,000 English conversations. Let’s take a look at one of the training examples. Take the first example,

sample = dataset["train"][0]

print(sample)


{

    "messages": [

        {

            "content": "Is it possible to imagine a society without law?", 

            "role": "user",

        },

        {

            "content": "It is difficult to imagine a society that is able to be maintained without any semblance of Law. Laws exist for the purpose of maintaining society and past human behavior suggests that there would be people that have no interest in promoting social cohesion and norms so it's unlikely that complex social and economic systems could develop without a legal system.",

            "role": "assistant",

        },

        {

            "content": 'It seems like you consider the absence of law equal to the absence of anything that could guide the behaviour of the individual, however there are many other such things, like religion, conscience, tradition to mention a few important patterns which are known to have crucial influence on society even today, but also we could imagine more, like universal love if everyone suddenly became "awaken" in some spiritual sense, or simply just having an omnipotent leader who maintains a certain order without ever codifying the principles in law. Is it still difficult to imagine?',

            "role": "user",

        },

        {

            "content": "You are correct that there are other factors that can guide behavior in a society and play a role in shaping individuals' behavior and interactions with each other. However, even in societies where these factors are present, laws still serve an important role in maintaining social order and resolving conflicts. \n\nFor example, religious teachings may prohibit theft and murder, but laws provide a system of justice for those who violate these prohibitions. Personal morality and conscience may guide individuals to act in a certain way, but laws provide a framework for resolving disputes when conflicting moral beliefs arise. Furthermore, the other factors you mentioned, such as universal love or an omnipotent leader, are not necessarily stable or reliable guides for behavior. Universal love, while a noble ideal, may not be achievable in practice, and an omnipotent leader may be prone to corruption or abuse of power.\n\nLaws provide a crucial foundation for maintaining social order and ensuring justice. It is possible to imagine alternative systems of governance, but it is unlikely that a society without any sort of legal framework would be stable or functional in the long term.",

            "role": "assistant",

        },

        {

            "content": "Yeah, but laws are complicated. Most people can't understand them in depth. Some would argue it is almost a self-serving system which put energy into growing itself(eg.: patent trolling). I think there must be a less complex system which keeps up order in society.",

            "role": "user",

        },

    ]

}


OK, this looks like an interesting dialogue about moral philosophy, with each turn involving a role and content field to indicate who is writing. Let’s now take a look at converting these dialogues to a standard format that simplifies the way messages are generated at inference time.

A standard format for dialogues

One way to fine-tune a model on dialogues is to simply insert the system message and roles in each training example, and then separate each dialogue with an end-of-sequence token like . For instance, the conversation above could take the form:

Below is a dialogue between a human and AI assistant ...


Human: Is it possible to imagine a society without law?

Assistant: It is difficult to imagine ...

Human: It seems like you ...

Assistant: You are correct ...

Human: Yeah, but laws are complicated ..

<EOS>


Although this works fine for training, it isn’t ideal for inference because the model will naturally generate unwanted turns until it produces an <EOS> token, and some post-processing or additional logic is typically required to prevent this.

A more appealing approach is to use a structured format like ChatML, which wraps each turn with a set of special tokens that indicates the role of the query or response.

In this format, we have the following special tokens:

Let’s write a function that wraps our running example with these tokens to see what it looks like:

system_token = "<|system|>"

user_token = "<|user|>"

assistant_token = "<|assistant|>"

end_token = "<|end|>"


def prepare_dialogue(example):

    system_msg = "Below is a dialogue between a human and an AI assistant called StarChat."

    prompt = system_token + "\n" + system_msg + end_token + "\n"

    for message in example["messages"]:

        if message["role"] == "user":

            prompt += user_token + "\n" + message["content"] + end_token + "\n"

        else:

            prompt += assistant_token + "\n" + message["content"] + end_token + "\n"

    return prompt


print(prepare_dialogue(sample))


<|system|>

Below is a dialogue between a human and AI assistant called StarChat.

<|end|>

<|user|>

Is it possible to imagine a society without law?<|end|>

<|assistant|>

It is difficult to imagine ...<|end|>

<|user|>

It seems like you ...<|end|>

<|assistant|>

You are correct ...<|end|>

<|user|>

Yeah, but laws are complicated ...<|end|>


OK, this looks like what we need! The next step is to include these special tokens in the tokenizer’s vocabulary, so let’s download the StarCoder tokenizer and add them:

from transformers import AutoTokenizer


tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase")

tokenizer.add_special_tokens({"additional_special_tokens": ["<|system|>", "<|assistant|>", "<|user|>", "<|end|>"]})

# Check the tokens have been added

tokenizer.special_tokens_map


{

    "bos_token": "<|endoftext|>",

    "eos_token": "<|endoftext|>",

    "unk_token": "<|endoftext|>",

    "additional_special_tokens": ["<|system|>", "<|assistant|>", "<|user|>", "<|end|>"],

}


As a sanity check this works, let’s see if tokenizing the string "<|assistant|>" produces a single token ID:

tokenizer("<|assistant|>")


{"input_ids": [49153], "attention_mask": [1]}


Great, it works!

Masking user labels

One additional benefit of the special chat tokens is that we can use them to mask the loss from the labels associated with the user turns of each dialogue. The reason to do this is to ensure the model is conditioned on the user parts of the dialogue, but only trained to predict the assistant parts (which is what really matters during inference). Here’s a simple function that masks the labels in place and converts all the user tokens to -100 which is subsequently ignored by the loss function:

def mask_user_labels(tokenizer, labels):

    user_token_id = tokenizer.convert_tokens_to_ids(user_token)

    assistant_token_id = tokenizer.convert_tokens_to_ids(assistant_token)

    for idx, label_id in enumerate(labels):

        if label_id == user_token_id:

            current_idx = idx

            while labels[current_idx] != assistant_token_id and current_idx < len(labels):

                labels[current_idx] = -100 # Ignored by the loss

                current_idx += 1


dialogue = "<|user|>\nHello, can you help me?<|end|>\n<|assistant|>\nSure, what can I do for you?<|end|>\n"

input_ids = tokenizer(dialogue).input_ids

labels = input_ids.copy()

mask_user_labels(tokenizer, labels)

labels


[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 49153, 203, 69, 513, 30, 2769, 883, 439, 745, 436, 844, 49, 49155, 203]


OK, we can see that all the user input IDs have been masked in the labels as desired. These special tokens have embeddings that will need to be learned during the fine-tuning process. Let’s take a look at what’s involved.

Fine-tuning StarCoder with DeepSpeed ZeRO-3

The StarCoder and StarCoderBase models contain 16B parameters, which means we’ll need a lot of GPU vRAM to fine-tune them — for instance, simply loading the model weights in full FP32 precision requires around 60GB vRAM! Fortunately, there are a few options available to deal with large models like this:

Since DeepSpeed is tightly integrated in 🤗 Transformers, we’ll use it to train our model. To get started, first clone BigCode’s StarCoder repo from GitHub and navigate to the chat directory:

git clone https://github.com/bigcode-project/starcoder.git

cd starcoder/chat


Next, create a Python virtual environment using e.g. Conda:

conda create -n starchat python=3.10 && conda activate starchat


Next, we install PyTorch v1.13.1. Since this is hardware-dependent, we direct you to the PyTorch Installation Page for this step. Once you've installed it, install the rest of the project dependencies:

pip install -r requirements.txt


We need to be logged into both Hugging Face. To do so, run:

huggingface-cli login


Finally, install Git LFS with:

sudo apt-get install git-lfs


The final step is to launch the training! If you’re lucky enough to have 8 x A100 (80GB) GPUs to run this training, you can run the following command. Training should take around 45 minutes:

torchrun --nproc_per_node=8 train.py config.yaml --deepspeed=deepspeed_z3_config_bf16.json


Here the config.yaml file specifies all the parameters associated with the dataset, model, and training - you can configure it here to adapt the training to a new dataset. Your trained model will then be available on the Hub!

StarCoder as a coding assistant

Generating plots

We wanted to see how our model could do with basic visualization tasks, following the famous unicorn drawing in tikz of GPT-4. To do this, we prompted our model with some coding tasks and got wonderful results! Yes, these are a little cherry picked as we only selected the completions that wrote functioning code, but the others were not far off!

Example 1: bar plot

Prompt:

Give the following data {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'], 'Age':[20, 21, 19, 18], 'Height' : [6.1, 5.9, 6.0, 6.1]}. Can you plot one graph with two subplots as columns. The first is a bar graph showing the height of each person. The second is a bargraph showing the age of each person? Draw the graph in seaborn talk mode.


Response:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

plt.style.use('seaborn-talk')



data = {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'],

        'Age':[20, 21, 19, 18],

        'Height':[6.1, 5.9, 6.0, 6.1]}


df=pd.DataFrame(data)



# Bar Graph for Height and Age

fig,(ax1, ax2)=plt.subplots(nrows=1, ncols=2, figsize=(14,7))

sns.barplot(x='Name', y="Height", data=df, palette="Blues_d", ax=ax1).set_title("Height Comparison")

sns.barplot(x='Name',y ="Age", data=df,palette="Reds_d", ax=ax2 ).set_title("Age Comparison")



 # Add padding between plots

fig.tight_layout()


# Show the final image

plt.show()




Example of a plot generated by StarChat.

Example 2: mapping

Prompt:

Draw me a map of the world using geopandas. Make it so that only Germany and Spain are colored red.


Response:

import pandas as pd

from matplotlib import pyplot as plt

import geopandas as gpd

from shapely.geometry import Point, Polygon

%matplotlib inline

# Load data from URL or local file

url = 'https://raw.githubusercontent.com/datasets/geo-countries/master/data/countries.geojson'

df = gpd.read_file(url)


# Create plot

fig, ax = plt.subplots()

ax.set_aspect('equal')

world = gpd.GeoDataFrame({'name': ['World'],

                          'geometry': [Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])]})

germany = df[df['ADMIN'] == "Germany"]

spain = df[df['ADMIN'] == "Spain"]

other = df[(df['ADMIN']!= "Germany") & (df['ADMIN']!= "Spain")]

world.plot(color='lightgrey', edgecolor='white', ax=ax)

germany.plot(color="red", ax=ax)

spain.plot(color="red", ax=ax)

other.plot(color="skyblue", ax=ax)

plt.title("European Countries")

plt.show()




Example of a plot generated by StarChat.

Example 3: basketball

Prompt:

There was a basketball game with the following stats. player, points, rebounds and assists: J. Harden 42 8 9 J. Embiid 34 13 4 T. Maxey 14 8 1 T. Harris 9 7 2 P. Tucker 6 3 1. Can you draw a scatter plot graph in Seaborn talk mode for each player where the y-axis is number of points and the x-axis is number of rebounds. Make sure the marker is 'o'. Put the name of the player over each point. The title should be "Sixers Players".


Response:

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

%matplotlib inline


# Load data into dataframe

df = pd.DataFrame({'Player': ['J. Harden', 'J. Embiid', 'T. Maxey', 'T. Harris', 'P. Tucker'],

                   'Points': [42, 34, 14, 9, 6],

                   'Rebounds': [8, 13, 8, 7, 3],

                   'Assists': [9, 4, 1, 2, 1]})


# Create figure and axis objects

fig, ax = plt.subplots()


# Plot points vs rebounds

sns.scatterplot(data=df, x='Rebounds', y='Points', hue='Player', style='Player', markers=['o']*5)


# Remove legend since it overlaps with labels on top of players' names

ax.legend([],[], frameon=False)  


# Add text labels above dots for player names

for i, txt in enumerate(df['Player']):

    ax.annotate(txt, (df["Rebounds"][i] +.1, df["Points"][i]))


# Set titles and labels

ax.set_title('Sixers Player')

ax.set_xlabel('Number of Rebounds')

ax.set_ylabel('Number of Points')

plt.show()




Example of a plot generated by StarChat.

Evaluating coding assistants

Evaluating coding assistants (or chatbots more generally) is tricky because the user-facing metrics we care about are often not measured in conventional NLP benchmarks. For example, we ran the base and fine-tuned StarCoderBase models through EleutherAI’s language model evaluation harness to measure their performance on the following benchmarks:

The results are shown in the table below, where we can see the fine-tuned model has improved, but not in a manner that reflects it’s conversational capabilities.

Model

ARC

HellaSwag

MMLU

TruthfulQA

StarCoderBase

0.30

0.46

0.33

0.40

StarChat (alpha)

0.33

0.49

0.34

0.44

So what can be done instead of relying on automatic metrics on benchmarks? To date, two main methods have been proposed:

As a simple experiment, we used ChatGPT to test our StarCoder models on several programming languages. To do this, we first created a seed dataset of interesting prompts for evaluation. We used ChatGPT to initiate this process, asking it things such as:

Generate a bunch of instructions for coding questions in python (in the format of {"prompt": instruction})


or

Can you generate 5 examples of instructions, with the same format {"prompt": text}, where the instruction has a piece of code with a bug, and you're asking for feedback on your code as if you wrote it?


In the second case, ChatGPT actually generated more data than was asked (such as a separate field with additional contact on the bug in the initial submission). Right now, this dataset contains 115 prompts and is primarily in Python. Three quarters of the prompts are instructions asking for the user to provide code, and one quarter ask for feedback on a buggy code sample.

In our experiments, we asked OpenAI’s models to rate the answers each on a score from 1 to 8 with a modified version of the Vicuna code prompt comparing responses. In this case, the instruction tuned StarCoder model achieved a higher score than the base model 95.6% of the time. An interesting artifact is that we definitely see that ChatGPT likes to return safer scores in the middle of the range when compared to GPT4, which is more open to giving 1s and 8s.

Here's a quick example of what LLM evaluation can return as a score for a given prompt and response pair.

Prompt:

Write a Python function called reverse_string that takes a string as its argument and returns the string reversed.


Instruction-tuned completion (Assistant 2):

"Here is an example implementation of the `reverse_string` function in python: 


''' 

def reverse_string(input_str):

    \"\"\"Reverse a given input string\"\"\"

        # create empty list to store characters 

            output = []


            for char in input_str:

            # add each character to front of list 

            output.insert(0,char) 


    return ''.join(output)

# Example usage 

test_string =\"hello world\"

print(\"Reversed String:\", reverse_string(test_string))

'''


Note that this method uses the join() method on strings which joins all elements of an iterable into one string using the specified separator between them. 

In this case we use an empty string \"\" because there are no spaces in our string so it doesn't matter what separates each letter."


Base-model completion (Assistant 1):

"Sure thing! Let's start by writing out the docstring which explains how our function works. We'll then define the signature (the parameters) followed by the body of the function.


reverse_string.__doc__ = \"Reverses any given string.\"

reverse_string.__name__ ='reverse_string'

reverse_string.__signature__ = inspect.Signature() #<|end|>

<|user|>

Here is my attempt:

<|end|>

<|assistant|>

Okay great! Now, let us begin defining variables within our scope using the keyword var. Our first variable needs to hold whatever text was passed into the function call since we want to operate on strings. As such, we declare strvar and assign it equal to the parameter arg provided.

strvar := arg

Then, after declaring our second variable, we initialize it similarly but instead pass in the result of calling strvar's built-in.reversed() method alongside the index operator []. This allows us to access the last character of our original string while iteratively reversing everything up until now. Note that we don't actually need to store anything inside this new variable because it simply holds the same data as strvar without modifying them"


GPT4 Evaluation:

4 7


Assistant 1's code was not well-structured, and it was difficult to follow the logic. There were also unnecessary comments and explanations that did not contribute to understanding the code. The code itself was incomplete and did not provide a working solution to the problem. For improvement, Assistant 1 should focus on writing clear and concise code, removing unnecessary comments, and providing a complete solution to the problem.


Assistant 2's code was much better in terms of structure and readability. The code was accurate, efficient, and included helpful comments. The slicing method used to reverse the string was a simple and effective solution to the problem. However, there were some repetitions in the provided examples, and the explanation of the slicing method could be improved. Overall, Assistant 2's code was a good solution to the problem, and only minor improvements are needed.


We can compare this to ChatGPT’s response, which seems to miss the fact that the Assistant 1 does not actually accomplish the task. In its response it says the second is better, but gives it a lower score.

ChatGPT Evaluation:

8 7


Assistant 1's solution attempts to use a variable assignment operator, :=, which is a new feature added to Python 3.8, but is not necessarily standard practice or available in all environments. Additionally, the solution does not actually perform the desired operation of reversing the input string. Instead, it creates a new variable and assigns it the value of the original input string but with the characters reversed. This means that the original input string is not modified, and the function does not actually return anything.


Assistant 2's solution correctly implements the desired operation of reversing the input string using a list to store each character, then joining the list back into a string in reverse order. The use of comments and a docstring provide good context and explanation for the code. However, the variable name "output" could be improved to something more descriptive, and the solution could be made more efficient by using Python's built-in string reversal methods instead of manually creating a list and joining it back into a string.


Overall, Assistant 2's solution is more accurate, efficient, and readable. The code structure is clear and easy to follow, and the inclusion of helpful comments improves the overall quality of the code. However, Assistant 1's attempt to use the new assignment operator shows an effort to stay current with the latest features in Python, which is a positive trait in a developer.


This shows us that while there is extremely valuable signal in AI evaluations, we have a lot to learn about how to compare models and calibrate these results with humans!

Limitations and biases

Like many other language models, this alpha version of StarChat has strong to-be-addressed limitations, including a tendency to hallucinate facts and produce problematic content (especially when prompted to). In particular, the model hasn't been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT. Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the StarCoder dataset. For more details on the model’s limitations in terms of factuality and biases, see the model card.

Future directions

We were surprised to learn that a code-generation model like StarCoder could be converted into a conversational agent with a diverse dataset like that from OpenAssistant. One possible explanation is that StarCoder has been trained on both code and GitHub issues, the latter providing a rich signal of natural language content. We're excited to see where the community will take StarCoder - perhaps it will power the next wave of open-source assistants 🤗.

Acknowledgements

We thank Nicolas Patry and Olivier Dehaene for their help with deploying StarChat on the Inference API and enabling blazing fast text generation. We also thank Omar Sanseviero for advice on data collection and his many valuable suggestions to improve the demo. Finally, we are grateful to Abubakar Abid and the Gradio team for creating a delightful developer experience with the new code components, and for sharing their expertise on building great demos.

Links

Citation

To cite this work, please use the following citation:

@article{Tunstall2023starchat-alpha,

  author = {Tunstall, Lewis and Lambert, Nathan and Rajani, Nazneen and Beeching, Edward and Le Scao, Teven and von Werra, Leandro and Han, Sheon and Schmid, Philipp and Rush, Alexander},

  title = {Creating a Coding Assistant with StarCoder},

  journal = {Hugging Face Blog},

  year = {2023},

  note = {https://huggingface.co/blog/starchat-alpha},

}


Creating a Coding Assistant with StarCoder

Published May 9, 2023

Update on GitHub


Starcoder LLM

Creating a Coding Assistant with StarCoder 

StarCoder: A State-of-the-Art LLM for Code 

ALL 5 STAR AI.IO PAGE STUDY

How AI and IoT are Creating An Impact On Industries Today


HELLO AND WELCOME  TO THE 


5 STAR AI.IOT TOOLS FOR YOUR BUSINESS


ARE NEW WEBSITE IS ABOUT 5 STAR AI and io’t TOOLS on the net.

We prevaid you the best

Artificial Intelligence  tools and services that can be used to create and improve BUSINESS websites AND CHANNELS .

This site is  includes tools for creating interactive visuals, animations, and videos.

 as well as tools for SEO, marketing, and web development.

 It also includes tools for creating and editing text, images, and audio. The website is intended to provide users with a comprehensive list of AI-based tools to help them create and improve their business.

https://studio.d-id.com/share?id=078f9242d5185a9494e00852e89e17f7&utm_source=copy

This website is a collection of Artificial Intelligence (AI) tools and services that can be used to create and improve websites. It includes tools for creating interactive visuals, animations, and videos, as well as tools for SEO, marketing, and web development. It also includes tools for creating and editing text, images, and audio. The website is intended to provide users with a comprehensive list of AI-based tools to help them create and improve their websites.



אתר זה הוא אוסף של כלים ושירותים של בינה מלאכותית (AI) שניתן להשתמש בהם כדי ליצור ולשפר אתרים. הוא כולל כלים ליצירת ויזואליה אינטראקטיבית, אנימציות וסרטונים, כמו גם כלים לקידום אתרים, שיווק ופיתוח אתרים. הוא כולל גם כלים ליצירה ועריכה של טקסט, תמונות ואודיו. האתר נועד לספק למשתמשים רשימה מקיפה של כלים מבוססי AI שיסייעו להם ליצור ולשפר את אתרי האינטרנט שלהם.

Hello and welcome to our new site that shares with you the most powerful web platforms and tools available on the web today

All platforms, websites and tools have artificial intelligence AI and have a 5-star rating

All platforms, websites and tools are free and Pro paid

The platforms, websites and the tool's  are the best  for growing your business in 2022/3

שלום וברוכים הבאים לאתר החדש שלנו המשתף אתכם בפלטפורמות האינטרנט והכלים החזקים ביותר הקיימים היום ברשת. כל הפלטפורמות, האתרים והכלים הם בעלי בינה מלאכותית AI ובעלי דירוג של 5 כוכבים. כל הפלטפורמות, האתרים והכלים חינמיים ומקצועיים בתשלום הפלטפורמות, האתרים והכלים באתר זה הם הטובים ביותר  והמועילים ביותר להצמחת ולהגדלת העסק שלך ב-2022/3 

A Guide for AI-Enhancing Your Existing Business Application


A guide to improving your existing business application of artificial intelligence

מדריך לשיפור היישום העסקי הקיים שלך בינה מלאכותית

What is Artificial Intelligence and how does it work? What are the 3 types of AI?

What is Artificial Intelligence and how does it work? What are the 3 types of AI? The 3 types of AI are: General AI: AI that can perform all of the intellectual tasks a human can. Currently, no form of AI can think abstractly or develop creative ideas in the same ways as humans.  Narrow AI: Narrow AI commonly includes visual recognition and natural language processing (NLP) technologies. It is a powerful tool for completing routine jobs based on common knowledge, such as playing music on demand via a voice-enabled device.  Broad AI: Broad AI typically relies on exclusive data sets associated with the business in question. It is generally considered the most useful AI category for a business. Business leaders will integrate a broad AI solution with a specific business process where enterprise-specific knowledge is required.  How can artificial intelligence be used in business? AI is providing new ways for humans to engage with machines, transitioning personnel from pure digital experiences to human-like natural interactions. This is called cognitive engagement.  AI is augmenting and improving how humans absorb and process information, often in real-time. This is called cognitive insights and knowledge management. Beyond process automation, AI is facilitating knowledge-intensive business decisions, mimicking complex human intelligence. This is called cognitive automation.  What are the different artificial intelligence technologies in business? Machine learning, deep learning, robotics, computer vision, cognitive computing, artificial general intelligence, natural language processing, and knowledge reasoning are some of the most common business applications of AI.  What is the difference between artificial intelligence and machine learning and deep learning? Artificial intelligence (AI) applies advanced analysis and logic-based techniques, including machine learning, to interpret events, support and automate decisions, and take actions.  Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.  Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.  What are the current and future capabilities of artificial intelligence? Current capabilities of AI include examples such as personal assistants (Siri, Alexa, Google Home), smart cars (Tesla), behavioral adaptation to improve the emotional intelligence of customer support representatives, using machine learning and predictive algorithms to improve the customer’s experience, transactional AI like that of Amazon, personalized content recommendations (Netflix), voice control, and learning thermostats.  Future capabilities of AI might probably include fully autonomous cars, precision farming, future air traffic controllers, future classrooms with ambient informatics, urban systems, smart cities and so on.  To know more about the scope of artificial intelligence in your business, please connect with our expert.

מהי בינה מלאכותית וכיצד היא פועלת? מהם 3 סוגי הבינה המלאכותית?

מהי בינה מלאכותית וכיצד היא פועלת? מהם 3 סוגי הבינה המלאכותית? שלושת סוגי הבינה המלאכותית הם: בינה מלאכותית כללית: בינה מלאכותית שיכולה לבצע את כל המשימות האינטלקטואליות שאדם יכול. נכון לעכשיו, שום צורה של AI לא יכולה לחשוב בצורה מופשטת או לפתח רעיונות יצירתיים באותן דרכים כמו בני אדם. בינה מלאכותית צרה: בינה מלאכותית צרה כוללת בדרך כלל טכנולוגיות זיהוי חזותי ועיבוד שפה טבעית (NLP). זהו כלי רב עוצמה להשלמת עבודות שגרתיות המבוססות על ידע נפוץ, כגון השמעת מוזיקה לפי דרישה באמצעות מכשיר התומך בקול. בינה מלאכותית רחבה: בינה מלאכותית רחבה מסתמכת בדרך כלל על מערכי נתונים בלעדיים הקשורים לעסק המדובר. זה נחשב בדרך כלל לקטגוריית הבינה המלאכותית השימושית ביותר עבור עסק. מנהיגים עסקיים ישלבו פתרון AI רחב עם תהליך עסקי ספציפי שבו נדרש ידע ספציפי לארגון. כיצד ניתן להשתמש בבינה מלאכותית בעסק? AI מספקת דרכים חדשות לבני אדם לעסוק במכונות, ומעבירה את הצוות מחוויות דיגיטליות טהורות לאינטראקציות טבעיות דמויות אדם. זה נקרא מעורבות קוגניטיבית. בינה מלאכותית מגדילה ומשפרת את האופן שבו בני אדם קולטים ומעבדים מידע, לעתים קרובות בזמן אמת. זה נקרא תובנות קוגניטיביות וניהול ידע. מעבר לאוטומציה של תהליכים, AI מאפשר החלטות עסקיות עתירות ידע, תוך חיקוי אינטליגנציה אנושית מורכבת. זה נקרא אוטומציה קוגניטיבית. מהן טכנולוגיות הבינה המלאכותית השונות בעסק? למידת מכונה, למידה עמוקה, רובוטיקה, ראייה ממוחשבת, מחשוב קוגניטיבי, בינה כללית מלאכותית, עיבוד שפה טבעית וחשיבת ידע הם חלק מהיישומים העסקיים הנפוצים ביותר של AI. מה ההבדל בין בינה מלאכותית ולמידת מכונה ולמידה עמוקה? בינה מלאכותית (AI) מיישמת ניתוח מתקדמות וטכניקות מבוססות לוגיקה, כולל למידת מכונה, כדי לפרש אירועים, לתמוך ולהפוך החלטות לאוטומטיות ולנקוט פעולות. למידת מכונה היא יישום של בינה מלאכותית (AI) המספק למערכות את היכולת ללמוד ולהשתפר מניסיון באופן אוטומטי מבלי להיות מתוכנתים במפורש. למידה עמוקה היא תת-קבוצה של למידת מכונה בבינה מלאכותית (AI) שיש לה רשתות המסוגלות ללמוד ללא פיקוח מנתונים שאינם מובנים או ללא תווית. מהן היכולות הנוכחיות והעתידיות של בינה מלאכותית? היכולות הנוכחיות של AI כוללות דוגמאות כמו עוזרים אישיים (Siri, Alexa, Google Home), מכוניות חכמות (Tesla), התאמה התנהגותית לשיפור האינטליגנציה הרגשית של נציגי תמיכת לקוחות, שימוש בלמידת מכונה ואלגוריתמים חזויים כדי לשפר את חווית הלקוח, עסקאות בינה מלאכותית כמו זו של אמזון, המלצות תוכן מותאמות אישית (Netflix), שליטה קולית ותרמוסטטים ללמידה. יכולות עתידיות של AI עשויות לכלול כנראה מכוניות אוטונומיות מלאות, חקלאות מדויקת, בקרי תעבורה אוויריים עתידיים, כיתות עתידיות עם אינפורמטיקה סביבתית, מערכות עירוניות, ערים חכמות וכן הלאה. כדי לדעת יותר על היקף הבינה המלאכותית בעסק שלך, אנא צור קשר עם המומחה שלנו.

Glossary of Terms


Application Programming Interface(API):

An API, or application programming interface, is a set of rules and protocols that allows different software programs to communicate and exchange information with each other. It acts as a kind of intermediary, enabling different programs to interact and work together, even if they are not built using the same programming languages or technologies. API's provide a way for different software programs to talk to each other and share data, helping to create a more interconnected and seamless user experience.

Artificial Intelligence(AI):

the intelligence displayed by machines in performing tasks that typically require human intelligence, such as learning, problem-solving, decision-making, and language understanding. AI is achieved by developing algorithms and systems that can process, analyze, and understand large amounts of data and make decisions based on that data.

Compute Unified Device Architecture(CUDA):

CUDA is a way that computers can work on really hard and big problems by breaking them down into smaller pieces and solving them all at the same time. It helps the computer work faster and better by using special parts inside it called GPUs. It's like when you have lots of friends help you do a puzzle - it goes much faster than if you try to do it all by yourself.

The term "CUDA" is a trademark of NVIDIA Corporation, which developed and popularized the technology.

Data Processing:

The process of preparing raw data for use in a machine learning model, including tasks such as cleaning, transforming, and normalizing the data.

Deep Learning(DL):

A subfield of machine learning that uses deep neural networks with many layers to learn complex patterns from data.

Feature Engineering:

The process of selecting and creating new features from the raw data that can be used to improve the performance of a machine learning model.

Freemium:

You might see the term "Freemium" used often on this site. It simply means that the specific tool that you're looking at has both free and paid options. Typically there is very minimal, but unlimited, usage of the tool at a free tier with more access and features introduced in paid tiers.

Generative Art:

Generative art is a form of art that is created using a computer program or algorithm to generate visual or audio output. It often involves the use of randomness or mathematical rules to create unique, unpredictable, and sometimes chaotic results.

Generative Pre-trained Transformer(GPT):

GPT stands for Generative Pretrained Transformer. It is a type of large language model developed by OpenAI.

GitHub:

GitHub is a platform for hosting and collaborating on software projects


Google Colab:

Google Colab is an online platform that allows users to share and run Python scripts in the cloud

Graphics Processing Unit(GPU):

A GPU, or graphics processing unit, is a special type of computer chip that is designed to handle the complex calculations needed to display images and video on a computer or other device. It's like the brain of your computer's graphics system, and it's really good at doing lots of math really fast. GPUs are used in many different types of devices, including computers, phones, and gaming consoles. They are especially useful for tasks that require a lot of processing power, like playing video games, rendering 3D graphics, or running machine learning algorithms.

Large Language Model(LLM):

A type of machine learning model that is trained on a very large amount of text data and is able to generate natural-sounding text.

Machine Learning(ML):

A method of teaching computers to learn from data, without being explicitly programmed.

Natural Language Processing(NLP):

A subfield of AI that focuses on teaching machines to understand, process, and generate human language

Neural Networks:

A type of machine learning algorithm modeled on the structure and function of the brain.

Neural Radiance Fields(NeRF):

Neural Radiance Fields are a type of deep learning model that can be used for a variety of tasks, including image generation, object detection, and segmentation. NeRFs are inspired by the idea of using a neural network to model the radiance of an image, which is a measure of the amount of light that is emitted or reflected by an object.

OpenAI:

OpenAI is a research institute focused on developing and promoting artificial intelligence technologies that are safe, transparent, and beneficial to society

Overfitting:

A common problem in machine learning, in which the model performs well on the training data but poorly on new, unseen data. It occurs when the model is too complex and has learned too many details from the training data, so it doesn't generalize well.

Prompt:

A prompt is a piece of text that is used to prime a large language model and guide its generation

Python:

Python is a popular, high-level programming language known for its simplicity, readability, and flexibility (many AI tools use it)

Reinforcement Learning:

A type of machine learning in which the model learns by trial and error, receiving rewards or punishments for its actions and adjusting its behavior accordingly.

Spatial Computing:

Spatial computing is the use of technology to add digital information and experiences to the physical world. This can include things like augmented reality, where digital information is added to what you see in the real world, or virtual reality, where you can fully immerse yourself in a digital environment. It has many different uses, such as in education, entertainment, and design, and can change how we interact with the world and with each other.

Stable Diffusion:

Stable Diffusion generates complex artistic images based on text prompts. It’s an open source image synthesis AI model available to everyone. Stable Diffusion can be installed locally using code found on GitHub or there are several online user interfaces that also leverage Stable Diffusion models.

Supervised Learning:

A type of machine learning in which the training data is labeled and the model is trained to make predictions based on the relationships between the input data and the corresponding labels.

Unsupervised Learning:

A type of machine learning in which the training data is not labeled, and the model is trained to find patterns and relationships in the data on its own.

Webhook:

A webhook is a way for one computer program to send a message or data to another program over the internet in real-time. It works by sending the message or data to a specific URL, which belongs to the other program. Webhooks are often used to automate processes and make it easier for different programs to communicate and work together. They are a useful tool for developers who want to build custom applications or create integrations between different software systems.


מילון מונחים


ממשק תכנות יישומים (API): API, או ממשק תכנות יישומים, הוא קבוצה של כללים ופרוטוקולים המאפשרים לתוכנות שונות לתקשר ולהחליף מידע ביניהן. הוא פועל כמעין מתווך, המאפשר לתוכניות שונות לקיים אינטראקציה ולעבוד יחד, גם אם הן אינן בנויות באמצעות אותן שפות תכנות או טכנולוגיות. ממשקי API מספקים דרך לתוכנות שונות לדבר ביניהן ולשתף נתונים, ועוזרות ליצור חווית משתמש מקושרת יותר וחלקה יותר. בינה מלאכותית (AI): האינטליגנציה שמוצגת על ידי מכונות בביצוע משימות הדורשות בדרך כלל אינטליגנציה אנושית, כגון למידה, פתרון בעיות, קבלת החלטות והבנת שפה. AI מושגת על ידי פיתוח אלגוריתמים ומערכות שיכולים לעבד, לנתח ולהבין כמויות גדולות של נתונים ולקבל החלטות על סמך הנתונים הללו. Compute Unified Device Architecture (CUDA): CUDA היא דרך שבה מחשבים יכולים לעבוד על בעיות קשות וגדולות באמת על ידי פירוקן לחתיכות קטנות יותר ופתרון כולן בו זמנית. זה עוזר למחשב לעבוד מהר יותר וטוב יותר על ידי שימוש בחלקים מיוחדים בתוכו הנקראים GPUs. זה כמו כשיש לך הרבה חברים שעוזרים לך לעשות פאזל - זה הולך הרבה יותר מהר מאשר אם אתה מנסה לעשות את זה לבד. המונח "CUDA" הוא סימן מסחרי של NVIDIA Corporation, אשר פיתחה והפכה את הטכנולוגיה לפופולרית. עיבוד נתונים: תהליך הכנת נתונים גולמיים לשימוש במודל למידת מכונה, כולל משימות כמו ניקוי, שינוי ונימול של הנתונים. למידה עמוקה (DL): תת-תחום של למידת מכונה המשתמש ברשתות עצביות עמוקות עם רבדים רבים כדי ללמוד דפוסים מורכבים מנתונים. הנדסת תכונות: תהליך הבחירה והיצירה של תכונות חדשות מהנתונים הגולמיים שניתן להשתמש בהם כדי לשפר את הביצועים של מודל למידת מכונה. Freemium: ייתכן שתראה את המונח "Freemium" בשימוש לעתים קרובות באתר זה. זה פשוט אומר שלכלי הספציפי שאתה מסתכל עליו יש אפשרויות חינמיות וגם בתשלום. בדרך כלל יש שימוש מינימלי מאוד, אך בלתי מוגבל, בכלי בשכבה חינמית עם יותר גישה ותכונות שהוצגו בשכבות בתשלום. אמנות גנרטיבית: אמנות גנרטיבית היא צורה של אמנות שנוצרת באמצעות תוכנת מחשב או אלגוריתם ליצירת פלט חזותי או אודיו. לרוב זה כרוך בשימוש באקראיות או בכללים מתמטיים כדי ליצור תוצאות ייחודיות, בלתי צפויות ולעיתים כאוטיות. Generative Pre-trained Transformer(GPT): GPT ראשי תיבות של Generative Pre-trained Transformer. זהו סוג של מודל שפה גדול שפותח על ידי OpenAI. GitHub: GitHub היא פלטפורמה לאירוח ושיתוף פעולה בפרויקטי תוכנה

Google Colab: Google Colab היא פלטפורמה מקוונת המאפשרת למשתמשים לשתף ולהריץ סקריפטים של Python בענן Graphics Processing Unit(GPU): GPU, או יחידת עיבוד גרפית, הוא סוג מיוחד של שבב מחשב שנועד להתמודד עם המורכבות חישובים הדרושים להצגת תמונות ווידאו במחשב או במכשיר אחר. זה כמו המוח של המערכת הגרפית של המחשב שלך, והוא ממש טוב לעשות הרבה מתמטיקה ממש מהר. GPUs משמשים סוגים רבים ושונים של מכשירים, כולל מחשבים, טלפונים וקונסולות משחקים. הם שימושיים במיוחד למשימות הדורשות כוח עיבוד רב, כמו משחקי וידאו, עיבוד גרפיקה תלת-ממדית או הפעלת אלגוריתמים של למידת מכונה. מודל שפה גדול (LLM): סוג של מודל למידת מכונה שאומן על כמות גדולה מאוד של נתוני טקסט ומסוגל ליצור טקסט בעל צליל טבעי. Machine Learning (ML): שיטה ללמד מחשבים ללמוד מנתונים, מבלי להיות מתוכנתים במפורש. עיבוד שפה טבעית (NLP): תת-תחום של AI המתמקד בהוראת מכונות להבין, לעבד וליצור שפה אנושית רשתות עצביות: סוג של אלגוריתם למידת מכונה המבוססת על המבנה והתפקוד של המוח. שדות קרינה עצביים (NeRF): שדות קרינה עצביים הם סוג של מודל למידה עמוקה שיכול לשמש למגוון משימות, כולל יצירת תמונה, זיהוי אובייקטים ופילוח. NeRFs שואבים השראה מהרעיון של שימוש ברשת עצבית למודל של זוהר תמונה, שהוא מדד לכמות האור שנפלט או מוחזר על ידי אובייקט. OpenAI: OpenAI הוא מכון מחקר המתמקד בפיתוח וקידום טכנולוגיות בינה מלאכותית שהן בטוחות, שקופות ומועילות לחברה. Overfitting: בעיה נפוצה בלמידת מכונה, שבה המודל מתפקד היטב בנתוני האימון אך גרועים בחדשים, בלתי נראים. נתונים. זה מתרחש כאשר המודל מורכב מדי ולמד יותר מדי פרטים מנתוני האימון, כך שהוא לא מכליל היטב. הנחיה: הנחיה היא פיסת טקסט המשמשת לתכנון מודל שפה גדול ולהנחות את הדור שלו Python: Python היא שפת תכנות פופולרית ברמה גבוהה הידועה בפשטות, בקריאות ובגמישות שלה (כלי AI רבים משתמשים בה) למידת חיזוק: סוג של למידת מכונה שבה המודל לומד על ידי ניסוי וטעייה, מקבל תגמולים או עונשים על מעשיו ומתאים את התנהגותו בהתאם. מחשוב מרחבי: מחשוב מרחבי הוא השימוש בטכנולוגיה כדי להוסיף מידע וחוויות דיגיטליות לעולם הפיזי. זה יכול לכלול דברים כמו מציאות רבודה, שבה מידע דיגיטלי מתווסף למה שאתה רואה בעולם האמיתי, או מציאות מדומה, שבה אתה יכול לשקוע במלואו בסביבה דיגיטלית. יש לו שימושים רבים ושונים, כמו בחינוך, בידור ועיצוב, והוא יכול לשנות את האופן שבו אנו מתקשרים עם העולם ואחד עם השני. דיפוזיה יציבה: דיפוזיה יציבה מייצרת תמונות אמנותיות מורכבות המבוססות על הנחיות טקסט. זהו מודל AI של סינתזת תמונות בקוד פתוח הזמין לכולם. ניתן להתקין את ה-Stable Diffusion באופן מקומי באמצעות קוד שנמצא ב-GitHub או שישנם מספר ממשקי משתמש מקוונים הממנפים גם מודלים של Stable Diffusion. למידה מפוקחת: סוג של למידת מכונה שבה נתוני האימון מסומנים והמודל מאומן לבצע תחזיות על סמך היחסים בין נתוני הקלט והתוויות המתאימות. למידה ללא פיקוח: סוג של למידת מכונה שבה נתוני האימון אינם מסומנים, והמודל מאומן למצוא דפוסים ויחסים בנתונים בעצמו. Webhook: Webhook הוא דרך של תוכנת מחשב אחת לשלוח הודעה או נתונים לתוכנית אחרת דרך האינטרנט בזמן אמת. זה עובד על ידי שליחת ההודעה או הנתונים לכתובת URL ספציפית, השייכת לתוכנית האחרת. Webhooks משמשים לעתים קרובות כדי להפוך תהליכים לאוטומטיים ולהקל על תוכניות שונות לתקשר ולעבוד יחד. הם כלי שימושי למפתחים שרוצים לבנות יישומים מותאמים אישית או ליצור אינטגרציות בין מערכות תוכנה שונות.

WELCOME TO THE

5 STAR AI.IO

TOOLS

FOR YOUR BUSINESS