Generate Your First Professional
Google Vertex AI PROJECT & Get Your
BUSINESS 2 Another Level.
Vertex AI is a machine learning platform that brings together data engineering, data science, and machine learning engineering workflows, enabling teams to collaborate using a common set of tools. The platform offers several options for model training, including AutoML for training models without writing code or preparing data splits and custom training for users who require more control over the training process.
Vertex AI also provides end-to-end MLOps (Machine Learning Operations) tools, which help automate and scale projects throughout the machine learning lifecycle. These tools run on fully managed infrastructure, offering customization options based on performance and budget needs.
The platform can be accessed using a variety of interfaces, such as the Vertex AI SDK for Python, Google Cloud Console, the Google Cloud command line tool, client libraries, and Terraform (with limited support).
Before we take a deeper look to this, let's understand the machine learning workflow.
After defining the prediction task, the first thing you do is ingest the data, analyze it, and then transform it; then, you create and train the model. Evaluate the model for efficiency and optimization and deploy it to make predictions. For example:
Ingestion, analysis, and transforming are all about data preparation, and you do that through managed data sets within Vertex AI. You have tools to create the data set by importing the data using the console or the API. Whereas, for model training, you have two options: Auto ML or custom; with varying machine learning expertise, for some use cases, Auto ML works wonderfully, such as images or videos and text files. But, if you want more control on your model's architecture, you must use custom models, as they are great for TensorFlow or Pytorch code. Once the model is trained, you have the ability to assess that model and optimize it, and understand the signals behind your models' predictions with explainable AI.
Explainable AI allows you to dive deeper into the model and understand which factors are playing a role in defining what the model is predicting. If you're happy with the model, you can deploy it to an endpoint to serve it for online predictions using the API or the console.
The deployment includes all the physical resources and the scalable hardware that's needed to scale the model for lower latency and online predictions. When the model is deployed, you can get the projections using the command line interface, the console UI, or the SDK and the APIs.
The Machine Learning Workflow with Vertex AI:
Data Preparation: The first step in any machine learning project is data preparation, which involves extracting, cleaning, and analyzing the dataset. With Vertex AI, you can explore and visualize data using Vertex AI Workbench notebooks, which integrate with Cloud Storage and BigQuery for faster data processing. For handling large datasets, you can utilize Dataproc Serverless Spark from its Workbench notebook.
Model Training: After preparing the data, you need to train a model using a suitable training method. Vertex AI offers AutoML for training models with tabular, image, text, and video data without coding. For more control over the training process, you can use custom training with your preferred ML framework and hyperparameter tuning options. Vertex AI Vizier can also help optimize hyperparameters for custom-trained models.
Model Evaluation and Iteration: Once the model is trained, it is essential to evaluate its performance using metrics like precision and recall. You can create evaluations through the Vertex AI Model Registry or include them in your Vertex AI Pipelines workflow. Based on the evaluation results, you can make adjustments to the data and iterate on the model.
Model Serving: With Vertex AI, you can easily deploy your models into production for real-time online predictions or asynchronous batch predictions. The platform also supports an optimized TensorFlow runtime for serving TensorFlow models at a lower cost and lower latency. In addition, the Vertex AI Feature Store is available for serving features from a central repository for online serving cases with tabular models.
Model Monitoring: Monitoring the performance of your deployed models is crucial for ensuring their effectiveness. Vertex AI Model Monitoring can help you keep track of training-serving skew and prediction drift, alerting you when the prediction data deviates significantly from the training baseline.
It offers a range of features and tools to support various aspects of the machine learning workflow. Some notable features include:
AutoML: Develop high-quality custom machine learning models without writing training routines.
Workbench: A Jupyter-based environment for data scientists to carry out their ML work, from experimentation to deployment and model management.
Data Labeling: Obtain accurate labels from human labelers for improved machine-learning models.
Explainable AI: Understanding and building trust in your model predictions with robust explanations.
Feature Store: A central repository for serving, sharing, and reusing ML features.
ML Metadata: Track artifacts, lineage, and execution for ML workflows with an easy-to-use Python SDK.
Model Monitoring: Automated alerts for data drift, concept drift, or other model performance incidents requiring supervision.
Pipelines: Streamline your MLOps by building pipelines using TensorFlow Extended and Kubeflow Pipelines, with detailed metadata tracking, continuous modeling, and triggered model retraining.
PROS
CONS
Unified Platform
Learning Curve
AutoML and Custom Training
Cost
MLOps tools
Vendor lock-in
Fully-managed infrastructure
Limited support for some features
Multiple interfaces
Potentially overwhelming for small projects
Scalable and flexible
Vertex AI offers flexible pricing based on model training, predictions, and Google Cloud product resource usage. You can find full pricing rates on the platform's website or estimate your costs using their pricing calculator.
Learning Curve
AutoML and Custom Training
As a beginner, diving into the world of machine learning and artificial intelligence can be daunting. However, Google Cloud's Vertex AI offers a comprehensive and user-friendly platform that can support you throughout the entire machine learning workflow. From data preparation to model deployment and monitoring, it provides the tools and features needed to accelerate your projects and help you achieve success in your machine-learning endeavors.
By leveraging Vertex AI, you can access state-of-the-art technology, simplify your machine learning processes, and collaborate more effectively with your team. So, if you're new to machine learning or looking to streamline your existing projects, consider giving it a try and harness the power of Google Cloud's machine learning platform.
https://www.aibloggs.com/post/guide-to-vertex-ai
Vertex AI
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case.
New customers get $300 in free credits to spend on Vertex AI.
Try Vertex AI freeContact sales
Accelerate ML with a unified data and AI platform and tooling for pre-trained and custom models
Build generative AI apps quickly and responsibly with Model Garden and Generative AI Studio
Implement MLOps practices to efficiently scale, manage, monitor, and govern your ML workloads
Reduce training time and costs with optimized infrastructure
Learn more in the Vertex AI documentation
BENEFITS
Easily access a variety of foundation models, via developer friendly APIs on Model Garden. Customize, uptrain, and fine tune models to fit your needs with Generative AI Studio.
Data scientists can move faster with purpose-built tools for training, tuning, and deploying ML models. Reduce training time and cost with optimized AI infrastructure.
Remove the complexity of model maintenance with MLOps tooling such as Vertex AI Pipelines, to streamline running ML pipelines, and Vertex AI Feature Store to serve, and use AI technologies as ML features.
KEY FEATURES
Jumpstart your ML project with Model Garden, a single place to access a wide variety of APIs, foundation models, and open source models. Kick off a variety of workflows including using models directly, tuning models in Generative AI Studio, or deploying models to a data science notebook.
Vertex AI provides purpose built tools for data scientists and ML engineers to efficiently and responsibly automate, standardize, and manage ML projects throughout the entire development life cycle. Using Vertex AI you can easily train, test, monitor, deploy, and govern ML models at scale, reducing the work needed to maintain model performance in production and enabling data scientists and ML engineers to focus on innovation code.
Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection.
Vertex AI provides low-code tooling and up-training capabilities so practitioners with a wide variety of expertise can leverage machine learning workloads. With Generative AI Studio, developers can tune and deploy foundation models for their use cases via a simple UI. And, with our off the shelf APIs, developers can easily call upon pre-trained models to quickly solve real-world problems.
Vertex makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden.
https://cloud.google.com/vertex-ai#section-1
BONUS VIDEO
On May 18, 2021 at Google I/O 2021, Google Cloud announced the first general availability of Vertex AI, a unified AI/ML platform that allows companies and developers to accelerate the development and maintenance of AI/ML solutions. So what exactly is it and why we need to be (or not to be) excited about it.
Advertisements
REPORT THIS AD
We had two guiding lights while building Vertex AI: get data scientists and engineers out of the orchestration weeds, and create an industry-wide shift that would make everyone get serious about moving AI out of pilot purgatory and into full-scale production
Andrew Moore, vice president and general manager of Cloud AI and Industry Solutions at Google Cloud
Vertex AI is a managed machine learning (ML) platform that allows companies to accelerate the deployment and maintenance of artificial intelligence (AI) models.
Advertisements
REPORT THIS AD
According to Google, Vertex AI requires nearly 80% fewer lines of code to train a model versus competitive platforms, enabling data scientists and ML engineers across all levels of expertise the ability to implement MLOps to efficiently build and manage ML projects throughout the entire development lifecycle.
Vertex AI – Unified AI/ML UI, now in general availability on Google Cloud Platform
Common building construct of any machine learning frameworks today consists of:
Data Extraction
Extraction of data using standard ETL or ELT tools or services and storing them in an object storage or any database for further analysis.
Data Analysis, Preparation and Cleaning
Once the data is stored on cloud, a standard process of analysing the data and also transforming the data comes into play. This process can either be carried out by using standard ETL/ELT tools or using cloud services.
Model Training
Once the data is cleaned and transformed, Data scientists train the model using a bunch of ML algorithms. The algorithms can be either Custom models or AutoML depending on the dataset processed and stored in the previous steps.
Model Evaluation and Tuning
Upon training, models are evaluation for prediction accuracy and bias. This is a continuous process of development and requires to train the model again to achieve a desired result.
Model Deployment
Once the model are trained and evaluated, it is deployed on a scalable infrastructure with endpoints exposed.
Model Prediction and Monitoring
A critical step is to monitor the performance of the models on live dataset. Based on the accuracy rate of the prediction, the models are retrained and the entire process starting from model training till monitoring are carried out.
Advertisements
REPORT THIS AD
Having said that, the above pipeline stages are quite significantly different to each others. Depending on how you do your ETL, rest of the pipeline becomes quite different. For e.g. tabular CSV dataset ML pipeline execution is quite different than an image classification one. The storage location and type of your dataset is also a big factor e.g. store in local SSD disk or on Cloud Storage. Hence there is a need to have a unified definition of data.
Now let’s look at the Model building and training stages, using TensorFlow as an ML framework is different from using PyTorch, AutoML, etc. The same goes for the deployment of such frameworks into production. Hence there is also a need to ensure every model framework are treated in the same way.
Advertisements
REPORT THIS AD
Vertex AI embraces MLOps technique and re-architect the entire Model pipeline into one single roof. This unified framework brings in a lot of excitement among the AI/ML developers and is also quite unique.
It lowers the barrier for MLOps, the creation and deployment of AI applications, and, ultimately, AI-fueled digital transformation. Before this, there were no good solutions out there that provided all the professional-data scientist-and-data engineer-grade capabilities in an integrated platform. Enterprises had to stitch together a stack of disjointed tools and technologies making it hard for nearly all enterprises to get the full value from their AI initiatives.
Forrester Analyst Kjell Carlsson on Vertex AI
Google’s Vertex AI comes into the picture providing an unified definitions and implementation of the below concepts:
Dataset
A dataset can be structured or unstructured. It has managed metadata including annotations, and can be stored anywhere on GCP. At present only Cloud Storage and BigQuery are supported.
Feature Store
Vertex Feature Store, a repository to help data science practitioners organize, store, and serve machine learning features
Labeling
Vertex data labeling service provides an end user with an easy out of the box solution to label their data.
Containerised Training Pipeline
A training pipeline is a series of containerised steps that can be used to train an ML model using a dataset. The containerisation helps with generalisation, reproducibility, and auditability.
Continuous Monitoring
Vertex Model Monitoring, a self-service model tool that lets users monitor the quality of machine learning models over time.
End to End Unified AI Platform – Vertex AI
COMPLETE LIST OF VERTEX AI FEATURES ARE IN HERE.
Hence the big idea is regardless of data or model framework, the pipeline is unique across as the same. So, once you create a dataset, you can use it for different models. You can get Explainable AI from an endpoint regardless of how you trained your model.
Advertisements
REPORT THIS AD
TRY OUT VERTEX AI IN GOOGLE CLOUD PLATFORM.
Image Credits: Google Cloud Platform
https://anotherreeshu.wordpress.com/2021/05/23/vertex-ai-one-platform-to-rule-them-all-an-introduction/
New customers get $300 in free credits to spend on Vertex AI.
Vertex AI
Build, deploy, and scale machine learning (ML) models faster, with fully managed ML tools for any use case.
New customers get $300 in free credits to spend on Vertex AI.
Try Vertex AI freeContact sales
Accelerate ML with a unified data and AI platform and tooling for pre-trained and custom models
Build generative AI apps quickly and responsibly with Model Garden and Generative AI Studio
Implement MLOps practices to efficiently scale, manage, monitor, and govern your ML workloads
Reduce training time and costs with optimized infrastructure
Learn more in the Vertex AI documentation
BENEFITS
Easily access a variety of foundation models, via developer friendly APIs on Model Garden. Customize, uptrain, and fine tune models to fit your needs with Generative AI Studio.
Data scientists can move faster with purpose-built tools for training, tuning, and deploying ML models. Reduce training time and cost with optimized AI infrastructure.
Remove the complexity of model maintenance with MLOps tooling such as Vertex AI Pipelines, to streamline running ML pipelines, and Vertex AI Feature Store to serve, and use AI technologies as ML features.
KEY FEATURES
Jumpstart your ML project with Model Garden, a single place to access a wide variety of APIs, foundation models, and open source models. Kick off a variety of workflows including using models directly, tuning models in Generative AI Studio, or deploying models to a data science notebook.
Vertex AI provides purpose built tools for data scientists and ML engineers to efficiently and responsibly automate, standardize, and manage ML projects throughout the entire development life cycle. Using Vertex AI you can easily train, test, monitor, deploy, and govern ML models at scale, reducing the work needed to maintain model performance in production and enabling data scientists and ML engineers to focus on innovation code.
Through Vertex AI Workbench, Vertex AI is natively integrated with BigQuery, Dataproc, and Spark. You can use BigQuery ML to create and execute machine learning models in BigQuery using standard SQL queries on existing business intelligence tools and spreadsheets, or you can export datasets from BigQuery directly into Vertex AI Workbench and run your models from there. Use Vertex Data Labeling to generate highly accurate labels for your data collection.
Vertex AI provides low-code tooling and up-training capabilities so practitioners with a wide variety of expertise can leverage machine learning workloads. With Generative AI Studio, developers can tune and deploy foundation models for their use cases via a simple UI. And, with our off the shelf APIs, developers can easily call upon pre-trained models to quickly solve real-world problems.
Vertex makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden.
https://cloud.google.com/vertex-ai#section-1
Google cloud Blog
Warren Barkley
Senior Director, Product Management
Okay, so I initially suggested that I deliver the content of this blog as an interpretive dance video. My suggestion was turned down, and I'm sure you’re as disappointed as I am. But dancing or not, I’m really excited about Generative AI support in Vertex AI.
Vertex AI was launched in 2021 to help fast-track ML model development and deployment, from feature engineering to model training to low-latency inference, all with enterprise governance and monitoring. Since then, customers like Wayfair, Vodafone, Twitter, and CNA have accelerated their ML projects with Vertex AI, and we’ve released hundreds of new features.
But we didn’t stop there — Vertex AI recently had its biggest update yet. Generative AI support in Vertex AI offers the simplest way for teams to take advantage of an array of generative models. Now it’s possible to harness the full power of generative AI built directly in our end-to-end machine learning platform.
In the last few months, consumer-grade generative AI has captured the attention of millions, with intelligent chatbots and lifelike digital avatars. Realizing the potential of this technology means putting it in the hands of every developer, business, and government. To date, it’s been difficult to access generative AI and customize foundation models for business use cases because managing these large models in production is a difficult task, requiring an advanced toolkit, lots of data, specialized skills, and even more time.
Generative AI support in Vertex AI makes it easier for developers and data scientists to access, customize, and deploy foundation models from a simple user interface. We provide a wide range of tools, automated workflows, and starting points. Once deployed, foundation models can be scaled, managed, and governed in production using Vertex AI’s end-to-end MLOps capabilities and fully-managed AI infrastructure.
Vertex AI recently added two new buckets of features: Model Garden, and Generative AI Studio. In this blog, we dive deeper into these features and explore what’s possible.
Model Garden provides a single environment to search, discover, and interact with Google’s own foundation models, and in time, hundreds of open-source and third-party models. Users will have access to more than just text models — they will be able to build next-generation applications with access to multimodal models from Google across vision, dialog, code generation, and code completion. We’re committed to providing choice at every level of the AI stack, which is why Model Garden will include models from both open-source partners and our ecosystem of AI partners. With a wide variety of model types and sizes available in one place, our customers will have the flexibility to use the best resource for their business needs.
From Model Garden, users can kick off a variety of workflows, including using the model directly as an API, tuning the model in Generative AI Studio, or deploying the model directly to a data science notebook in Vertex AI.
Generative AI Studio is a managed environment in Vertex AI where developers and data scientists can interact with, tune, and deploy foundation models. Generative AI Studio provides a wide range of capabilities including a chat interface, prompt design, prompt tuning, and even the ability to fine-tune model weights. From Generative AI Studio, users can implement newly-tuned models directly into their applications or deploy models to production on Vertex AI’s ML platform. With both tools that help application developers and data scientists contribute to building generative AI, organizations can bring the next generation of applications to production faster, and with more confidence.
1. Use foundation models as APIs: We’re making Google’s foundation models available to use as APIs, including text, dialogue, code generation and completion, image generation, and embeddings. Vertex AI's managed endpoints make it easy to build generative capabilities into an application, requiring only a few lines of code, just like any other Google Cloud API. Developers do not need to worry about the complexities of provisioning storage and compute resources, or optimizing the model for inference.
2. Prompt design: Generative AI Studio provides an easy-to-use interface for prompt design, which is the process of manually creating text inputs, or prompts, that inform a foundation model. The familiar chat-like experience enables people without developer expertise to interact with a model. Users can also configure the system well beyond the chat interface. For example, they can control the temperature of responses, which means they can control whether the responses have higher accuracy or higher creativity.
3. Prompt tuning: Prompt tuning is an efficient, low-cost way of customizing a foundation model without retraining it. Prompts are how we guide the model to generate useful output, using natural language rather than a programming language. In Generative AI Studio, it’s easy to upload user data that is then used to prompt the model to behave in a specific way. For example, if a user wants to update the PaLM language model to speak in their brand voice, they can simply upload brand documents, tweets, press releases, and other assets to Generative AI Studio.
4. Fine-tuning: Fine-tuning in Generative AI Studio is a great option for organizations that want to build highly differentiated generative AI offerings. Fine-tuning is the process of further training a pre-trained model on new data, resulting in changes to the model’s weights. This is helpful for use cases that require outputs with specialized results, like legal or medical vocabulary. In Vertex AI Generative AI Studio, users can upload large data sets and re-train models using Vertex AI Training. Google Cloud offers you the ability to fine-tune your model without exposing the changes in the weights outside your protected tenet. This enables you to use the power of foundation models without your data ever leaving your control.
5. Cost optimization: At Google, we have run these models in our production workloads for several years, and in that time, we’ve developed several techniques to optimize inference for cost. We offer optimized model selection (OMS), which looks at what is being asked of the model and routes the request to the smallest model that can effectively respond to it. When enabled, this happens in the background and is invoked based on different conditions.
“Since its launch, Vertex AI has helped transform the way CNA scales AI, better managing machine learning models in production,” says Santosh Bardwaj, SVP, Global Chief Data & Analytics Officer at CNA. “With large model support on Vertex AI, CNA can now also tailor its insights to best suit the unique business needs of customers and colleagues.”
“Google Cloud has been a strategic partner for Deutsche Bank, working with us to improve operational efficiency and reshape how we design and deliver products for our customers,” says Gil Perez, Chief Innovation Officer, Deutsche Bank. “We appreciate their approach to Responsible AI and look forward to co-innovating with their advancements in generative AI, building on our success to date in enhancing developer productivity, boosting innovation, and increasing employee retention.”
New business-ready generative AI products are available today to select developers in the Google Cloud trusted tester program.
Visit our AI on Google Cloud webpage or join me at the Google Data Cloud & AI Summit, live online March 29, to learn more about our new announcements. Who knows, I may even throw in some dance moves
Google cloud Blog
Our NEW Site OFFERS FREE LINKS & FREE STUDIES To SITES With 5-STAR Artificial Intelligence TOOLS That Will HELP YOU Run YOUR BUSINESS Quickly & Efficiently & Increase YOUR SALES
Hello and welcome to our new site that shares with you the most powerful web platforms and tools available on the web today
Discover the ultimate collection of 5-star AI.io tools for your business's growth in 2022/3. Boost your efficiency and productivity for free or upgrade to Pro for added benefits.
Unleash the power of AI with our handpicked selection of top-rated web platforms and tools. Take your business to new heights in 2022/3 with these game-changing solutions.
Elevate your business with the best AI.io tools available online. Get the competitive edge you need for success in 2022/3, whether you opt for free options or unlock advanced features with a Pro account.
Looking for cutting-edge web platforms? Look no further! Our curated list of AI.io tools guarantees a 5-star experience, empowering your business to thrive and succeed in 2022/3.
Embrace the future of business growth with our AI-powered web platforms. Rated with 5 stars and equipped with advanced features, these tools will drive your success in 2022/3. Explore the possibilities today!
שלום וברוכים הבאים לאתר החדש שלנו המשתף אתכם בפלטפורמות האינטרנט והכלים החזקים ביותר הקיימים היום ברשת.
גלה את האוסף האולטימטיבי של כלי AI.IoT 5 כוכבים לצמיחת העסק שלך ב-2022/3. שפר את היעילות והפרודוקטיביות שלך בחינם או שדרג ל-Pro לקבלת הטבות נוספות.
שחרר את הכוח של בינה מלאכותית עם מבחר הפלטפורמות והכלים המובחרים שלנו. קח את העסק שלך לגבהים חדשים ב-2022/3 עם הפתרונות האלה שמשנים את המשחק.
הרם את העסק שלך עם כלי ה-AI.io הטובים ביותר הזמינים באינטרנט. קבל את היתרון התחרותי שאתה צריך להצלחה ב-2022/3, בין אם תבחר באפשרויות חינמיות ובין אם אתה פותח תכונות מתקדמות עם חשבון Pro.
מחפשים פלטפורמות אינטרנט מתקדמות? אל תחפש עוד! הרשימה האוצרת שלנו של כלי AI.io מבטיחה חוויה של 5 כוכבים, ומעצימה את העסק שלך לשגשג ולהצליח ב-2022/3
A guide to improving your existing business application of artificial intelligence
מדריך לשיפור היישום העסקי הקיים שלך בינה מלאכותית
What is Artificial Intelligence and how does it work? What are the 3 types of AI? The 3 types of AI are: General AI: AI that can perform all of the intellectual tasks a human can. Currently, no form of AI can think abstractly or develop creative ideas in the same ways as humans. Narrow AI: Narrow AI commonly includes visual recognition and natural language processing (NLP) technologies. It is a powerful tool for completing routine jobs based on common knowledge, such as playing music on demand via a voice-enabled device. Broad AI: Broad AI typically relies on exclusive data sets associated with the business in question. It is generally considered the most useful AI category for a business. Business leaders will integrate a broad AI solution with a specific business process where enterprise-specific knowledge is required. How can artificial intelligence be used in business? AI is providing new ways for humans to engage with machines, transitioning personnel from pure digital experiences to human-like natural interactions. This is called cognitive engagement. AI is augmenting and improving how humans absorb and process information, often in real-time. This is called cognitive insights and knowledge management. Beyond process automation, AI is facilitating knowledge-intensive business decisions, mimicking complex human intelligence. This is called cognitive automation. What are the different artificial intelligence technologies in business? Machine learning, deep learning, robotics, computer vision, cognitive computing, artificial general intelligence, natural language processing, and knowledge reasoning are some of the most common business applications of AI. What is the difference between artificial intelligence and machine learning and deep learning? Artificial intelligence (AI) applies advanced analysis and logic-based techniques, including machine learning, to interpret events, support and automate decisions, and take actions. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled. What are the current and future capabilities of artificial intelligence? Current capabilities of AI include examples such as personal assistants (Siri, Alexa, Google Home), smart cars (Tesla), behavioral adaptation to improve the emotional intelligence of customer support representatives, using machine learning and predictive algorithms to improve the customer’s experience, transactional AI like that of Amazon, personalized content recommendations (Netflix), voice control, and learning thermostats. Future capabilities of AI might probably include fully autonomous cars, precision farming, future air traffic controllers, future classrooms with ambient informatics, urban systems, smart cities and so on. To know more about the scope of artificial intelligence in your business, please connect with our expert.
מהי בינה מלאכותית וכיצד היא פועלת? מהם 3 סוגי הבינה המלאכותית? שלושת סוגי הבינה המלאכותית הם: בינה מלאכותית כללית: בינה מלאכותית שיכולה לבצע את כל המשימות האינטלקטואליות שאדם יכול. נכון לעכשיו, שום צורה של AI לא יכולה לחשוב בצורה מופשטת או לפתח רעיונות יצירתיים באותן דרכים כמו בני אדם. בינה מלאכותית צרה: בינה מלאכותית צרה כוללת בדרך כלל טכנולוגיות זיהוי חזותי ועיבוד שפה טבעית (NLP). זהו כלי רב עוצמה להשלמת עבודות שגרתיות המבוססות על ידע נפוץ, כגון השמעת מוזיקה לפי דרישה באמצעות מכשיר התומך בקול. בינה מלאכותית רחבה: בינה מלאכותית רחבה מסתמכת בדרך כלל על מערכי נתונים בלעדיים הקשורים לעסק המדובר. זה נחשב בדרך כלל לקטגוריית הבינה המלאכותית השימושית ביותר עבור עסק. מנהיגים עסקיים ישלבו פתרון AI רחב עם תהליך עסקי ספציפי שבו נדרש ידע ספציפי לארגון. כיצד ניתן להשתמש בבינה מלאכותית בעסק? AI מספקת דרכים חדשות לבני אדם לעסוק במכונות, ומעבירה את הצוות מחוויות דיגיטליות טהורות לאינטראקציות טבעיות דמויות אדם. זה נקרא מעורבות קוגניטיבית. בינה מלאכותית מגדילה ומשפרת את האופן שבו בני אדם קולטים ומעבדים מידע, לעתים קרובות בזמן אמת. זה נקרא תובנות קוגניטיביות וניהול ידע. מעבר לאוטומציה של תהליכים, AI מאפשר החלטות עסקיות עתירות ידע, תוך חיקוי אינטליגנציה אנושית מורכבת. זה נקרא אוטומציה קוגניטיבית. מהן טכנולוגיות הבינה המלאכותית השונות בעסק? למידת מכונה, למידה עמוקה, רובוטיקה, ראייה ממוחשבת, מחשוב קוגניטיבי, בינה כללית מלאכותית, עיבוד שפה טבעית וחשיבת ידע הם חלק מהיישומים העסקיים הנפוצים ביותר של AI. מה ההבדל בין בינה מלאכותית ולמידת מכונה ולמידה עמוקה? בינה מלאכותית (AI) מיישמת ניתוח מתקדמות וטכניקות מבוססות לוגיקה, כולל למידת מכונה, כדי לפרש אירועים, לתמוך ולהפוך החלטות לאוטומטיות ולנקוט פעולות. למידת מכונה היא יישום של בינה מלאכותית (AI) המספק למערכות את היכולת ללמוד ולהשתפר מניסיון באופן אוטומטי מבלי להיות מתוכנתים במפורש. למידה עמוקה היא תת-קבוצה של למידת מכונה בבינה מלאכותית (AI) שיש לה רשתות המסוגלות ללמוד ללא פיקוח מנתונים שאינם מובנים או ללא תווית. מהן היכולות הנוכחיות והעתידיות של בינה מלאכותית? היכולות הנוכחיות של AI כוללות דוגמאות כמו עוזרים אישיים (Siri, Alexa, Google Home), מכוניות חכמות (Tesla), התאמה התנהגותית לשיפור האינטליגנציה הרגשית של נציגי תמיכת לקוחות, שימוש בלמידת מכונה ואלגוריתמים חזויים כדי לשפר את חווית הלקוח, עסקאות בינה מלאכותית כמו זו של אמזון, המלצות תוכן מותאמות אישית (Netflix), שליטה קולית ותרמוסטטים ללמידה. יכולות עתידיות של AI עשויות לכלול כנראה מכוניות אוטונומיות מלאות, חקלאות מדויקת, בקרי תעבורה אוויריים עתידיים, כיתות עתידיות עם אינפורמטיקה סביבתית, מערכות עירוניות, ערים חכמות וכן הלאה. כדי לדעת יותר על היקף הבינה המלאכותית בעסק שלך, אנא צור קשר עם המומחה שלנו.
Application Programming Interface(API):
An API, or application programming interface, is a set of rules and protocols that allows different software programs to communicate and exchange information with each other. It acts as a kind of intermediary, enabling different programs to interact and work together, even if they are not built using the same programming languages or technologies. API's provide a way for different software programs to talk to each other and share data, helping to create a more interconnected and seamless user experience.
Artificial Intelligence(AI):
the intelligence displayed by machines in performing tasks that typically require human intelligence, such as learning, problem-solving, decision-making, and language understanding. AI is achieved by developing algorithms and systems that can process, analyze, and understand large amounts of data and make decisions based on that data.
Compute Unified Device Architecture(CUDA):
CUDA is a way that computers can work on really hard and big problems by breaking them down into smaller pieces and solving them all at the same time. It helps the computer work faster and better by using special parts inside it called GPUs. It's like when you have lots of friends help you do a puzzle - it goes much faster than if you try to do it all by yourself.
The term "CUDA" is a trademark of NVIDIA Corporation, which developed and popularized the technology.
Data Processing:
The process of preparing raw data for use in a machine learning model, including tasks such as cleaning, transforming, and normalizing the data.
Deep Learning(DL):
A subfield of machine learning that uses deep neural networks with many layers to learn complex patterns from data.
Feature Engineering:
The process of selecting and creating new features from the raw data that can be used to improve the performance of a machine learning model.
Freemium:
You might see the term "Freemium" used often on this site. It simply means that the specific tool that you're looking at has both free and paid options. Typically there is very minimal, but unlimited, usage of the tool at a free tier with more access and features introduced in paid tiers.
Generative Art:
Generative art is a form of art that is created using a computer program or algorithm to generate visual or audio output. It often involves the use of randomness or mathematical rules to create unique, unpredictable, and sometimes chaotic results.
Generative Pre-trained Transformer(GPT):
GPT stands for Generative Pretrained Transformer. It is a type of large language model developed by OpenAI.
GitHub:
GitHub is a platform for hosting and collaborating on software projects
Google Colab:
Google Colab is an online platform that allows users to share and run Python scripts in the cloud
Graphics Processing Unit(GPU):
A GPU, or graphics processing unit, is a special type of computer chip that is designed to handle the complex calculations needed to display images and video on a computer or other device. It's like the brain of your computer's graphics system, and it's really good at doing lots of math really fast. GPUs are used in many different types of devices, including computers, phones, and gaming consoles. They are especially useful for tasks that require a lot of processing power, like playing video games, rendering 3D graphics, or running machine learning algorithms.
Large Language Model(LLM):
A type of machine learning model that is trained on a very large amount of text data and is able to generate natural-sounding text.
Machine Learning(ML):
A method of teaching computers to learn from data, without being explicitly programmed.
Natural Language Processing(NLP):
A subfield of AI that focuses on teaching machines to understand, process, and generate human language
Neural Networks:
A type of machine learning algorithm modeled on the structure and function of the brain.
Neural Radiance Fields(NeRF):
Neural Radiance Fields are a type of deep learning model that can be used for a variety of tasks, including image generation, object detection, and segmentation. NeRFs are inspired by the idea of using a neural network to model the radiance of an image, which is a measure of the amount of light that is emitted or reflected by an object.
OpenAI:
OpenAI is a research institute focused on developing and promoting artificial intelligence technologies that are safe, transparent, and beneficial to society
Overfitting:
A common problem in machine learning, in which the model performs well on the training data but poorly on new, unseen data. It occurs when the model is too complex and has learned too many details from the training data, so it doesn't generalize well.
Prompt:
A prompt is a piece of text that is used to prime a large language model and guide its generation
Python:
Python is a popular, high-level programming language known for its simplicity, readability, and flexibility (many AI tools use it)
Reinforcement Learning:
A type of machine learning in which the model learns by trial and error, receiving rewards or punishments for its actions and adjusting its behavior accordingly.
Spatial Computing:
Spatial computing is the use of technology to add digital information and experiences to the physical world. This can include things like augmented reality, where digital information is added to what you see in the real world, or virtual reality, where you can fully immerse yourself in a digital environment. It has many different uses, such as in education, entertainment, and design, and can change how we interact with the world and with each other.
Stable Diffusion:
Stable Diffusion generates complex artistic images based on text prompts. It’s an open source image synthesis AI model available to everyone. Stable Diffusion can be installed locally using code found on GitHub or there are several online user interfaces that also leverage Stable Diffusion models.
Supervised Learning:
A type of machine learning in which the training data is labeled and the model is trained to make predictions based on the relationships between the input data and the corresponding labels.
Unsupervised Learning:
A type of machine learning in which the training data is not labeled, and the model is trained to find patterns and relationships in the data on its own.
Webhook:
A webhook is a way for one computer program to send a message or data to another program over the internet in real-time. It works by sending the message or data to a specific URL, which belongs to the other program. Webhooks are often used to automate processes and make it easier for different programs to communicate and work together. They are a useful tool for developers who want to build custom applications or create integrations between different software systems.
ממשק תכנות יישומים (API): API, או ממשק תכנות יישומים, הוא קבוצה של כללים ופרוטוקולים המאפשרים לתוכנות שונות לתקשר ולהחליף מידע ביניהן. הוא פועל כמעין מתווך, המאפשר לתוכניות שונות לקיים אינטראקציה ולעבוד יחד, גם אם הן אינן בנויות באמצעות אותן שפות תכנות או טכנולוגיות. ממשקי API מספקים דרך לתוכנות שונות לדבר ביניהן ולשתף נתונים, ועוזרות ליצור חווית משתמש מקושרת יותר וחלקה יותר. בינה מלאכותית (AI): האינטליגנציה שמוצגת על ידי מכונות בביצוע משימות הדורשות בדרך כלל אינטליגנציה אנושית, כגון למידה, פתרון בעיות, קבלת החלטות והבנת שפה. AI מושגת על ידי פיתוח אלגוריתמים ומערכות שיכולים לעבד, לנתח ולהבין כמויות גדולות של נתונים ולקבל החלטות על סמך הנתונים הללו. Compute Unified Device Architecture (CUDA): CUDA היא דרך שבה מחשבים יכולים לעבוד על בעיות קשות וגדולות באמת על ידי פירוקן לחתיכות קטנות יותר ופתרון כולן בו זמנית. זה עוזר למחשב לעבוד מהר יותר וטוב יותר על ידי שימוש בחלקים מיוחדים בתוכו הנקראים GPUs. זה כמו כשיש לך הרבה חברים שעוזרים לך לעשות פאזל - זה הולך הרבה יותר מהר מאשר אם אתה מנסה לעשות את זה לבד. המונח "CUDA" הוא סימן מסחרי של NVIDIA Corporation, אשר פיתחה והפכה את הטכנולוגיה לפופולרית. עיבוד נתונים: תהליך הכנת נתונים גולמיים לשימוש במודל למידת מכונה, כולל משימות כמו ניקוי, שינוי ונימול של הנתונים. למידה עמוקה (DL): תת-תחום של למידת מכונה המשתמש ברשתות עצביות עמוקות עם רבדים רבים כדי ללמוד דפוסים מורכבים מנתונים. הנדסת תכונות: תהליך הבחירה והיצירה של תכונות חדשות מהנתונים הגולמיים שניתן להשתמש בהם כדי לשפר את הביצועים של מודל למידת מכונה. Freemium: ייתכן שתראה את המונח "Freemium" בשימוש לעתים קרובות באתר זה. זה פשוט אומר שלכלי הספציפי שאתה מסתכל עליו יש אפשרויות חינמיות וגם בתשלום. בדרך כלל יש שימוש מינימלי מאוד, אך בלתי מוגבל, בכלי בשכבה חינמית עם יותר גישה ותכונות שהוצגו בשכבות בתשלום. אמנות גנרטיבית: אמנות גנרטיבית היא צורה של אמנות שנוצרת באמצעות תוכנת מחשב או אלגוריתם ליצירת פלט חזותי או אודיו. לרוב זה כרוך בשימוש באקראיות או בכללים מתמטיים כדי ליצור תוצאות ייחודיות, בלתי צפויות ולעיתים כאוטיות. Generative Pre-trained Transformer(GPT): GPT ראשי תיבות של Generative Pre-trained Transformer. זהו סוג של מודל שפה גדול שפותח על ידי OpenAI. GitHub: GitHub היא פלטפורמה לאירוח ושיתוף פעולה בפרויקטי תוכנה
Google Colab: Google Colab היא פלטפורמה מקוונת המאפשרת למשתמשים לשתף ולהריץ סקריפטים של Python בענן Graphics Processing Unit(GPU): GPU, או יחידת עיבוד גרפית, הוא סוג מיוחד של שבב מחשב שנועד להתמודד עם המורכבות חישובים הדרושים להצגת תמונות ווידאו במחשב או במכשיר אחר. זה כמו המוח של המערכת הגרפית של המחשב שלך, והוא ממש טוב לעשות הרבה מתמטיקה ממש מהר. GPUs משמשים סוגים רבים ושונים של מכשירים, כולל מחשבים, טלפונים וקונסולות משחקים. הם שימושיים במיוחד למשימות הדורשות כוח עיבוד רב, כמו משחקי וידאו, עיבוד גרפיקה תלת-ממדית או הפעלת אלגוריתמים של למידת מכונה. מודל שפה גדול (LLM): סוג של מודל למידת מכונה שאומן על כמות גדולה מאוד של נתוני טקסט ומסוגל ליצור טקסט בעל צליל טבעי. Machine Learning (ML): שיטה ללמד מחשבים ללמוד מנתונים, מבלי להיות מתוכנתים במפורש. עיבוד שפה טבעית (NLP): תת-תחום של AI המתמקד בהוראת מכונות להבין, לעבד וליצור שפה אנושית רשתות עצביות: סוג של אלגוריתם למידת מכונה המבוססת על המבנה והתפקוד של המוח. שדות קרינה עצביים (NeRF): שדות קרינה עצביים הם סוג של מודל למידה עמוקה שיכול לשמש למגוון משימות, כולל יצירת תמונה, זיהוי אובייקטים ופילוח. NeRFs שואבים השראה מהרעיון של שימוש ברשת עצבית למודל של זוהר תמונה, שהוא מדד לכמות האור שנפלט או מוחזר על ידי אובייקט. OpenAI: OpenAI הוא מכון מחקר המתמקד בפיתוח וקידום טכנולוגיות בינה מלאכותית שהן בטוחות, שקופות ומועילות לחברה. Overfitting: בעיה נפוצה בלמידת מכונה, שבה המודל מתפקד היטב בנתוני האימון אך גרועים בחדשים, בלתי נראים. נתונים. זה מתרחש כאשר המודל מורכב מדי ולמד יותר מדי פרטים מנתוני האימון, כך שהוא לא מכליל היטב. הנחיה: הנחיה היא פיסת טקסט המשמשת לתכנון מודל שפה גדול ולהנחות את הדור שלו Python: Python היא שפת תכנות פופולרית ברמה גבוהה הידועה בפשטות, בקריאות ובגמישות שלה (כלי AI רבים משתמשים בה) למידת חיזוק: סוג של למידת מכונה שבה המודל לומד על ידי ניסוי וטעייה, מקבל תגמולים או עונשים על מעשיו ומתאים את התנהגותו בהתאם. מחשוב מרחבי: מחשוב מרחבי הוא השימוש בטכנולוגיה כדי להוסיף מידע וחוויות דיגיטליות לעולם הפיזי. זה יכול לכלול דברים כמו מציאות רבודה, שבה מידע דיגיטלי מתווסף למה שאתה רואה בעולם האמיתי, או מציאות מדומה, שבה אתה יכול לשקוע במלואו בסביבה דיגיטלית. יש לו שימושים רבים ושונים, כמו בחינוך, בידור ועיצוב, והוא יכול לשנות את האופן שבו אנו מתקשרים עם העולם ואחד עם השני. דיפוזיה יציבה: דיפוזיה יציבה מייצרת תמונות אמנותיות מורכבות המבוססות על הנחיות טקסט. זהו מודל AI של סינתזת תמונות בקוד פתוח הזמין לכולם. ניתן להתקין את ה-Stable Diffusion באופן מקומי באמצעות קוד שנמצא ב-GitHub או שישנם מספר ממשקי משתמש מקוונים הממנפים גם מודלים של Stable Diffusion. למידה מפוקחת: סוג של למידת מכונה שבה נתוני האימון מסומנים והמודל מאומן לבצע תחזיות על סמך היחסים בין נתוני הקלט והתוויות המתאימות. למידה ללא פיקוח: סוג של למידת מכונה שבה נתוני האימון אינם מסומנים, והמודל מאומן למצוא דפוסים ויחסים בנתונים בעצמו. Webhook: Webhook הוא דרך של תוכנת מחשב אחת לשלוח הודעה או נתונים לתוכנית אחרת דרך האינטרנט בזמן אמת. זה עובד על ידי שליחת ההודעה או הנתונים לכתובת URL ספציפית, השייכת לתוכנית האחרת. Webhooks משמשים לעתים קרובות כדי להפוך תהליכים לאוטומטיים ולהקל על תוכניות שונות לתקשר ולעבוד יחד. הם כלי שימושי למפתחים שרוצים לבנות יישומים מותאמים אישית או ליצור אינטגרציות בין מערכות תוכנה שונות.
WELCOME TO THE
TRANSCRIPT