HELLO & WELCOME TO THE
Replit
Generate Your First Professional Replit PROJECT & Get Your BUSINESS 2 Another Level.
Replit is a place where people can code, create, and learn together. It offers a free, collaborative, in-browser developer environment to code in 50+ languages without wasting time on setup.
The Replit team wrote a number of tutorials, and wants to know how people are experiencing them. So we're asking you to (a) try the data science tutorial and (b) create and publish a Spotlight page where you can show off your new knowledge. Think of a Spotlight page as a combination of GitHub and Behance, where you demonstrate the code and the visuals, and where anyone can fork your work to extend it. Here's an example:
If your Spotlight page is chosen, you will win $100 in Bitcoin!
First, complete the Replit data science tutorial here.
Next, create and publish a Spotlight page that uses what you just learned about data science and visualization. Points for creativity.
Submit the link to your Spotlight page below. The ten best submissions will each receive $100 in Bitcoin.
Ten submissions received $100 in BTC for their Replit published on Spotlight. Check them out below!
Update: Ghostwriter is out now!
In 2018 when we announced Multiplayer Mode, we said it's the most significant evolution of Replit to date. For the first time, you could share a URL with a friend, student, or coworker and get a shared text editor and runtime — no setup required. Replit Multiplayer is changing how an entire generation of programmers learn how to code and make software.
Today, we're announcing Ghostwriter, which infuses state-of-the-art intelligence into nearly all IDE features. Ghostwriter sports an ML-powered pair programmer that completes your code in realtime, tools to generate, transform, and explain code, and an in-editor search utility that lets you find and import open-source code without leaving your editor (think Stackoverflow in your editor).
Ghostwriter is like Multiplayer in that you collaborate in real-time with someone else. However, in this case, you're not coding with a person; instead, it's an agent representing the entire programming knowledge of the human race. We believe Ghostwriter will leapfrog traditional IDE features. Ghostwriter is the next major evolution of our platform. We think this will radically change how people write code on Replit — and in the process, will change software writ large. Forever.
Ghostwriter's flagship feature is Complete Code: an AI-powered pair programmer. We believe that Ghostwriter Complete Code is faster, more powerful, and more accessible than any other comparable offering. The best thing about Ghostwriter? It makes writing code on mobile devices not only tolerable, but actually enjoyable: Swipe right to accept!
Ghostwriter's Complete Code is in closed beta right now. Please sign up here if you'd like to help us test it. Here is what alpha users are saying about it:
"The first thing me and all my friends noticed was how much faster it is than GitHub Copilot. It is at least 2x faster, maybe 3x. It's a little detail but it makes a big difference."
"It makes web development so much easier. I feel like I'm only writing 50% of the code."
"After using the feature for only week, I can't imagine life without it"
"It's crazy how much faster I can learn new things without leaving the editors"
What do you do when you're not a multi-trillion multi-national corporation (yet) with tons of ML research scientists, infinite budget for training, billions in industry partnerships, and store most of the world's code but still want to bring state-of-the-art AI to production? You start from open-source!
Open-source Large Language Models (LLMs) like Salesforce's CodeGen models are a fantastic place to start. However, with billions of parameters, they are insanely high latency off-the-shelf. This is especially a problem for code completion, because the models need to be fast enough not to disrupt the user's flow. To be able to serve millions of users, we've been playing with a few optimization techniques to achieve super low latency at a reasonable cost. And we've made tremendous strides in a short amount of time — our median response time today is less than 400ms, which makes our product the fastest in the world.
Here we'll go over some of the optimization tactics we've used or are actively exploring:
First, we convert CodeGen checkpoint to FasterTransformer to make use of their highly-optimized decoder blocks (with the possibility of extending to distributed, multi-GPU fashion). Their computational and memory optimizations make inference much faster than popular frameworks like PyTorch or Tensorflow. On top of this, we use Triton, Nvidia's inference server, which is super fast and scalable.
For further speedup, we perform knowledge distillation of CodeGen model with 2B parameters down to a lightweight and fast student model with roughly 1B parameters. The student model is trained to reproduce the larger model closely while having far fewer parameters and being less computationally expensive. Hence, it is more practical when operating at scale.
We are also exploring post-training quantization of weights and activations to int8 precision with quantization-optimized kernels to bring down latency. Performing computation in such low precision with optimized kernels often improves latency without causing a significant loss in the accuracy of the model.
Work is already underway to improve Ghostwriter further:
Further training on open-source datasets like CodeParrot.
Deep Reinforcement Learning to further train LLMs with additional signals like user feedback, accuracy on unit tests, compiler/runtime errors etc.
Humans don't code unidirectionally. They go back and forth to add, delete, and edit code. Autoregressive language models generate code in one forward direction. Recent works have made LMs more flexible by infilling training. They divide code blocks into <prefix, middle, suffix>, mask middle and train the model to predict middle given prefix and suffix. Because Replit's IDE stores operational transformation edits, we capture the natural cursor movements of human programmers and their code edits, which contains much richer information than synthetically made infilling datasets. We plan to train LMs to predict the OT distribution. We think it will make LMs much more of a pair programmer.
Getting the model right is only half the battle. Surprisingly, the client-side implementation is equally as challenging as training and running the models.
The user experience for any AI application is paramount to making it feel helpful (instead of annoying). The nitpicky detail necessary to get this right is immense; here is a sampling of some of the issues we have been working on.
When the model generates a recommendation, it might contain code that already exists in the surrounding context. The simplest form of this is with whitespace and braces. A detail that seems tiny on the surface but matters a lot for a flawless user experience.
So, to fully understand this, imagine the following (incomplete) code:
const isOdd = useCallback(function isOdd(n) {
|
}, []);
You’ve stopped, with your cursor tabbed in to where the vertical bar is, and are about to receive a suggestion from the model. The model sends back its recommended completion:
return n % 2 === 1;
}, []);
This includes a leading tab and a trailing brace, both of which already exist, so if we just blindly dumped the recommendation into your code, you’d be left with:
const isOdd = useCallback(function isOdd(n) {
return n % 2 === 1;
}, []);
}, []);
A decent recommendation turned frustrating by an incomplete user experience.
Instead, we match and filter on certain matching whitespace, abstract syntax tree (AST) characteristics to produce the desired recommendation:
const isOdd = useCallback(function isOdd(n) {
return n % 2 === 1;
}, []);
Showing the correct code recommendation is only half of the equation. Very often, users keep typing even after the code recommendation is shown. If you type something that matches the suggestion, we need to adjust the suggestion shown on screen to hide the part the user has typed—and resurface it when you hit backspace.
What's more, when you type, the editor would autocomplete a beginning bracket whose corresponding ending bracket; we want to make sure the latter appears in the right spot. As an example, suppose you have typed
// Merge [number, number] with [string, string]
const mergeTuples = (first: |)
and the suggestion is
const mergeTuples = (first: Array<number>, second: Array<string>) => {
We want to make sure code recommendations do not disrupt existing code, and correctly splits itself into the part before ) and after it.
A common challenge with LLMs is that at times, they can generate useless suggestions, annoying repetition, or things that are completely wrong.
To produce something that actually feels like “intelligence” requires a bit more sophistication. We apply a collection of heuristic filters to decide to discard, truncate or otherwise transform some suggestions; soon, we’ll also apply a reinforcement learning layer to understand the kinds of suggestion that are helpful to users, filtering out suggestions that are unlikely to be accepted to prioritize suggestions that are genuinely helpful.
We can't overemphasize how much speed matters here. Anyone who has used a sluggish IDE knows how frustrating it is, and outdated suggestions that can get in your way will easily make this feature a net negative on the user experience.
In addition to all the model optimizations we detailed above, we also implemented streaming. In other words, we don't have to wait for the entire recommendation to be available, so we literally just start presenting the generated code as soon as possible, chunking it into your UI line-by-line as it becomes available.
This little detail makes an enormous difference to how fast the AI feels and how easily integrated into your actual programming experience it is. Maybe it also feels a bit more “intelligent” to know it takes time for the computer to figure out exactly how it wants to help.
Our conceptual model for Ghostwriter that it's a pair programming agent. It's tempting to map this to a single model that runs all the features. However, as we made progress, we realized that it's better to think of Ghostwriter as a society of models of different shapes and sizes helping you succeed.
A large amount of code exists in open source, but it’s hard to search with natural language because natural language and code are two very different modalities. So instead of deploying traditional approaches like keyword matching, we use embeddings from transformer-based models to power code search. Specifically, we use a finetuned version of CodeBERT model to get learned representations for code and query. The CodeBERT model is finetuned to map both code and query to vectors in joint vector space that are close to each other. We then conduct nearest neighbor matching between the code and query vectors/representations. Such learned representations of code can encode information about what the code does, in addition to other characteristics like keywords the code has, etc. Hence, during inference, the user can search for code in plain natural language by specifying what the code should do.
Importantly, users can search for code from inside the editor. This allows us to improve code search even further by making search contextual. Meaning, we give the ML model access to the code the user has already written, whenever searching for upcoming code. This allows us to exploit the clues present in user’s code (like libraries being used) that makes search tailored to that user’s context. We achieve such contextual code search by training CodeBERT model to minimize the distance between single embedding of code context + query, and code. More details can be found in this paper.
Large models are especially good at reasoning tasks, and explaining what a piece of code does benefit from every last bit of model performance we can get. For our Explain Code feature, we use the largest state-of-the-art code models, in this case powered by OpenAI.
While Complete Code is super useful for interactive experiences, sometimes users are willing to take a pause in order to generate entire programs or files. That kind of generations benefits from the performance of insanely large models (100B+ parameters).
Finally, we leverage exceptionally large models to provide prompt-driven refactor/rewrite experiences.
With the advent of LLMs and generative models in general, we believe that software is entering a new epoch. In the near future, anyone with time and good ideas will be able to build amazing things. AI will guide you as you learn new concept, push just-in-time useful information to you, and even comment on and critique your code. This brings us much closer to our vision of bringing the next billion software creators online, and in the process reducing the distance between ideas and wealth.
Many of the Ghostwriter features are already available for Hacker subscribers, and more are coming. Ghostwriter Complete Code will be in closed beta for the next few months as we continue to make improvements to it. If you're interested in trying out, please sign up here.
Over the next few months we'll be packaging up Ghostwriter into a Cycles-based power-up that anyone can buy. We're hoping to make this feature more affordable than other offerings on the market. Eventually, however, the plan is — just like Multiplayer mode — to make Replit AI-powered by default and freely available to everyone.
Ghostwriter is Replit’s suite of artificial intelligence features: Complete Code, Generate Code, Transform Code, Explain Code and Chat. Together, they enhance your development experience on Replit.
Ghostwriter returns results generated from large language models trained on publicly available code and tuned by Replit. To make suggestions and explain your code, Ghostwriter considers what you type and other context from your Repl like the programming language you're using.
Currently, Ghostwriter costs 1,000 Cycles per month ($10 USD/month).
Ghostwriter is also available through our Pro plan.
You can find more pricing details on our pricing page.
Ghostwriter performs best with JavaScript and Python code, but it supports 16 languages in total. The current list:
Bash
C
C#
C++
CSS
Go
Java
JavaScript
HTML
PHP
Perl
Python
R
Ruby
Rust
SQL
TypeScript
Note: effectiveness may vary by language.
Yes. You can turn off Ghostwriter Complete Code in the Replit workspace. See step-by-step guide [here]/ghostwriter/complete-code#turning-complete-code-on-and-off).
Go to the Cycles page and you will see a toggle for Ghostwriter in the menu. Turn the toggle off to turn off your Ghostwriter subscription's auto-renewal. You will still have access to Ghostwriter's features until the date of your renewal.
Note: cancelling your Ghostwriter does not turn off or change the amount of your Cycles Auto-Refill. To do that, see below:
Go to the Cycles page, and press the Edit Your Subscription on Stripe button to turn off or change the amount of your Cycles Auto-Refill subscription:
Complete Code actively provides suggestions in your workspace while you program in Replit. In contrast, for Generate Code, you select then prompt the feature with words describing the code you'd like.
The two features use different models. For more information on how each works, visit the [Complete Code]/ghostwriter/complete-code) and [Generate Code]/ghostwriter/generate-code) docs.
Good! And we’re developing Ghostwriter to be faster, more powerful, and more accessible than any comparable offering. Our product features are constantly getting better and faster.
Use Ghostwriter and share your feedback with Replit as you code. We also encourage you to report bugs, offensive output, code vulnerabilities, or unwanted data to our Support team at replit.com/support. Replit works and ships fast, takes trust and safety seriously, and we are committed to continually improving our products.
Ghostwriter is exclusive to Replit.
Ghostwriter will not share your code with other users. It currently is based on open-source large language models trained on public data.
No. As was the case before Replit launched Ghostwriter, code in public Repls is automatically subject to the MIT License. Check out Licensing Information for details. To check if a given Repl of yours is public or private, go to My Repls.
To work as an online development environment, Replit collects your interactions with the service and data that you input so we can display and run your software. Like any online service, we use this data so that we can provide and improve our services.
Code generated or suggested for you may be incorrect, offensive or otherwise inappropriate. By reporting this, you can help us to improve our products. Click the “Share feedback” link at the bottom right of the Generate Code window to provide your feedback, or visit our Support page to provide your feedback. Please include a copy of the code that you wrote and the code suggestion or explanation that you received.
For more information about how Replit processes personal data, please see our Privacy Policy.
Replit
Starting today, all users on Hacker, Pro, or Teams plans will see a 10x reduction in container restarts while coding in the Workspace. Previously, you would experience a restart at least once an hour. Now you can code for multiple hours straight without restarts. Deep work can stay uninterrupted and you can keep programs running longer while you build.
Repls are computers that live in the cloud. One of the most painful experiences with a cloud computer is losing your network link. Sometimes your network flakes out and things need to reconnect. But the worst version is when your Repl restarts. There are lots of reasons why this can happen. In the background, your container has stopped or died, and our infrastructure quickly starts up a new one to put you in. You can simulate this by typing kill 1 in the Shell.
When that happens, your running process stops, all your services restart, and the working memory of your program is lost. It breaks your flow, the most precious feeling when creating software.
Starting today, that’s going to happen much less often for Hacker, Pro, and Teams users. Instead of multiple restarts per hour, you should only see 1-2 per day (typically because we released new code, we’re working on eliminating those ones).
How did we do this? First, a quick explainer on how Cloud VM pricing works.
Underlying your Repl is a Docker container. We have a system managing those containers called conman. And conman runs on virtual machines (VMs) on Google Cloud Platform.
Replit’s mission is to bring the next billion software creators online. To do that, we give a free computer in the cloud to anybody who wants to learn to code, earn a Bounty, build a viral app, or start a new business. This is a cost management challenge, and one of the ways we handle it is purchasing VMs at the “spot rate”.
Spot rate machines are essentially spare machines that cloud providers have in any given data center. Providers offer large discounts to use these spare machines. But the catch is that sometimes those spare machines are needed by a user who is willing to pay full price. That means where the spare machines are located can change quickly. So if you’re using a spot rate VM, you can be “preempted” and kicked out of the machine when somebody comes along to pay full price for it.
It’s kind of like flying standby with an airline. You’ll get a discount, but no promise you’re getting the flight or route you asked for.
We do a lot of work to hide preemptions and move you to a new, available, spot rate machine quickly and seamlessly. But that dreaded reconnect is the price.
We’ve been doing a lot of work to enforce limits on the platform more consistently. You’ve seen us set limits on concurrently running Repls and outbound data transfer, which has led to significant cost savings on abusive use. But we also know having limits enforced can be frustrating.
So now, thanks to those savings and deeper partnership with Google Cloud, we can spend more money on the core product experience. We’ve upgraded all Hacker, Pro, and Teams user VMs from spot rate to regular provisioning when coding in the Workspace.
On the Platform Team, we like to play a game called “guess when the change landed”. See if you can figure out when we moved from spot rate to regular machines from this graph of VM preemptions:
Replit Blog
ALL 5 STAR AI.IO PAGE STUDY
HELLO AND WELCOME TO THE
5 STAR AI.IOT TOOLS FOR YOUR BUSINESS
ARE NEW WEBSITE IS ABOUT 5 STAR AI and io’t TOOLS on the net.
We prevaid you the best
Artificial Intelligence tools and services that can be used to create and improve BUSINESS websites AND CHANNELS .
This site is includes tools for creating interactive visuals, animations, and videos.
as well as tools for SEO, marketing, and web development.
It also includes tools for creating and editing text, images, and audio. The website is intended to provide users with a comprehensive list of AI-based tools to help them create and improve their business.
https://studio.d-id.com/share?id=078f9242d5185a9494e00852e89e17f7&utm_source=copy
This website is a collection of Artificial Intelligence (AI) tools and services that can be used to create and improve websites. It includes tools for creating interactive visuals, animations, and videos, as well as tools for SEO, marketing, and web development. It also includes tools for creating and editing text, images, and audio. The website is intended to provide users with a comprehensive list of AI-based tools to help them create and improve their websites.
אתר זה הוא אוסף של כלים ושירותים של בינה מלאכותית (AI) שניתן להשתמש בהם כדי ליצור ולשפר אתרים. הוא כולל כלים ליצירת ויזואליה אינטראקטיבית, אנימציות וסרטונים, כמו גם כלים לקידום אתרים, שיווק ופיתוח אתרים. הוא כולל גם כלים ליצירה ועריכה של טקסט, תמונות ואודיו. האתר נועד לספק למשתמשים רשימה מקיפה של כלים מבוססי AI שיסייעו להם ליצור ולשפר את אתרי האינטרנט שלהם.
Hello and welcome to our new site that shares with you the most powerful web platforms and tools available on the web today
All platforms, websites and tools have artificial intelligence AI and have a 5-star rating
All platforms, websites and tools are free and Pro paid
The platforms, websites and the tool's are the best for growing your business in 2022/3
שלום וברוכים הבאים לאתר החדש שלנו המשתף אתכם בפלטפורמות האינטרנט והכלים החזקים ביותר הקיימים היום ברשת. כל הפלטפורמות, האתרים והכלים הם בעלי בינה מלאכותית AI ובעלי דירוג של 5 כוכבים. כל הפלטפורמות, האתרים והכלים חינמיים ומקצועיים בתשלום הפלטפורמות, האתרים והכלים באתר זה הם הטובים ביותר והמועילים ביותר להצמחת ולהגדלת העסק שלך ב-2022/3
A guide to improving your existing business application of artificial intelligence
מדריך לשיפור היישום העסקי הקיים שלך בינה מלאכותית
What is Artificial Intelligence and how does it work? What are the 3 types of AI? The 3 types of AI are: General AI: AI that can perform all of the intellectual tasks a human can. Currently, no form of AI can think abstractly or develop creative ideas in the same ways as humans. Narrow AI: Narrow AI commonly includes visual recognition and natural language processing (NLP) technologies. It is a powerful tool for completing routine jobs based on common knowledge, such as playing music on demand via a voice-enabled device. Broad AI: Broad AI typically relies on exclusive data sets associated with the business in question. It is generally considered the most useful AI category for a business. Business leaders will integrate a broad AI solution with a specific business process where enterprise-specific knowledge is required. How can artificial intelligence be used in business? AI is providing new ways for humans to engage with machines, transitioning personnel from pure digital experiences to human-like natural interactions. This is called cognitive engagement. AI is augmenting and improving how humans absorb and process information, often in real-time. This is called cognitive insights and knowledge management. Beyond process automation, AI is facilitating knowledge-intensive business decisions, mimicking complex human intelligence. This is called cognitive automation. What are the different artificial intelligence technologies in business? Machine learning, deep learning, robotics, computer vision, cognitive computing, artificial general intelligence, natural language processing, and knowledge reasoning are some of the most common business applications of AI. What is the difference between artificial intelligence and machine learning and deep learning? Artificial intelligence (AI) applies advanced analysis and logic-based techniques, including machine learning, to interpret events, support and automate decisions, and take actions. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled. What are the current and future capabilities of artificial intelligence? Current capabilities of AI include examples such as personal assistants (Siri, Alexa, Google Home), smart cars (Tesla), behavioral adaptation to improve the emotional intelligence of customer support representatives, using machine learning and predictive algorithms to improve the customer’s experience, transactional AI like that of Amazon, personalized content recommendations (Netflix), voice control, and learning thermostats. Future capabilities of AI might probably include fully autonomous cars, precision farming, future air traffic controllers, future classrooms with ambient informatics, urban systems, smart cities and so on. To know more about the scope of artificial intelligence in your business, please connect with our expert.
מהי בינה מלאכותית וכיצד היא פועלת? מהם 3 סוגי הבינה המלאכותית? שלושת סוגי הבינה המלאכותית הם: בינה מלאכותית כללית: בינה מלאכותית שיכולה לבצע את כל המשימות האינטלקטואליות שאדם יכול. נכון לעכשיו, שום צורה של AI לא יכולה לחשוב בצורה מופשטת או לפתח רעיונות יצירתיים באותן דרכים כמו בני אדם. בינה מלאכותית צרה: בינה מלאכותית צרה כוללת בדרך כלל טכנולוגיות זיהוי חזותי ועיבוד שפה טבעית (NLP). זהו כלי רב עוצמה להשלמת עבודות שגרתיות המבוססות על ידע נפוץ, כגון השמעת מוזיקה לפי דרישה באמצעות מכשיר התומך בקול. בינה מלאכותית רחבה: בינה מלאכותית רחבה מסתמכת בדרך כלל על מערכי נתונים בלעדיים הקשורים לעסק המדובר. זה נחשב בדרך כלל לקטגוריית הבינה המלאכותית השימושית ביותר עבור עסק. מנהיגים עסקיים ישלבו פתרון AI רחב עם תהליך עסקי ספציפי שבו נדרש ידע ספציפי לארגון. כיצד ניתן להשתמש בבינה מלאכותית בעסק? AI מספקת דרכים חדשות לבני אדם לעסוק במכונות, ומעבירה את הצוות מחוויות דיגיטליות טהורות לאינטראקציות טבעיות דמויות אדם. זה נקרא מעורבות קוגניטיבית. בינה מלאכותית מגדילה ומשפרת את האופן שבו בני אדם קולטים ומעבדים מידע, לעתים קרובות בזמן אמת. זה נקרא תובנות קוגניטיביות וניהול ידע. מעבר לאוטומציה של תהליכים, AI מאפשר החלטות עסקיות עתירות ידע, תוך חיקוי אינטליגנציה אנושית מורכבת. זה נקרא אוטומציה קוגניטיבית. מהן טכנולוגיות הבינה המלאכותית השונות בעסק? למידת מכונה, למידה עמוקה, רובוטיקה, ראייה ממוחשבת, מחשוב קוגניטיבי, בינה כללית מלאכותית, עיבוד שפה טבעית וחשיבת ידע הם חלק מהיישומים העסקיים הנפוצים ביותר של AI. מה ההבדל בין בינה מלאכותית ולמידת מכונה ולמידה עמוקה? בינה מלאכותית (AI) מיישמת ניתוח מתקדמות וטכניקות מבוססות לוגיקה, כולל למידת מכונה, כדי לפרש אירועים, לתמוך ולהפוך החלטות לאוטומטיות ולנקוט פעולות. למידת מכונה היא יישום של בינה מלאכותית (AI) המספק למערכות את היכולת ללמוד ולהשתפר מניסיון באופן אוטומטי מבלי להיות מתוכנתים במפורש. למידה עמוקה היא תת-קבוצה של למידת מכונה בבינה מלאכותית (AI) שיש לה רשתות המסוגלות ללמוד ללא פיקוח מנתונים שאינם מובנים או ללא תווית. מהן היכולות הנוכחיות והעתידיות של בינה מלאכותית? היכולות הנוכחיות של AI כוללות דוגמאות כמו עוזרים אישיים (Siri, Alexa, Google Home), מכוניות חכמות (Tesla), התאמה התנהגותית לשיפור האינטליגנציה הרגשית של נציגי תמיכת לקוחות, שימוש בלמידת מכונה ואלגוריתמים חזויים כדי לשפר את חווית הלקוח, עסקאות בינה מלאכותית כמו זו של אמזון, המלצות תוכן מותאמות אישית (Netflix), שליטה קולית ותרמוסטטים ללמידה. יכולות עתידיות של AI עשויות לכלול כנראה מכוניות אוטונומיות מלאות, חקלאות מדויקת, בקרי תעבורה אוויריים עתידיים, כיתות עתידיות עם אינפורמטיקה סביבתית, מערכות עירוניות, ערים חכמות וכן הלאה. כדי לדעת יותר על היקף הבינה המלאכותית בעסק שלך, אנא צור קשר עם המומחה שלנו.
Application Programming Interface(API):
An API, or application programming interface, is a set of rules and protocols that allows different software programs to communicate and exchange information with each other. It acts as a kind of intermediary, enabling different programs to interact and work together, even if they are not built using the same programming languages or technologies. API's provide a way for different software programs to talk to each other and share data, helping to create a more interconnected and seamless user experience.
Artificial Intelligence(AI):
the intelligence displayed by machines in performing tasks that typically require human intelligence, such as learning, problem-solving, decision-making, and language understanding. AI is achieved by developing algorithms and systems that can process, analyze, and understand large amounts of data and make decisions based on that data.
Compute Unified Device Architecture(CUDA):
CUDA is a way that computers can work on really hard and big problems by breaking them down into smaller pieces and solving them all at the same time. It helps the computer work faster and better by using special parts inside it called GPUs. It's like when you have lots of friends help you do a puzzle - it goes much faster than if you try to do it all by yourself.
The term "CUDA" is a trademark of NVIDIA Corporation, which developed and popularized the technology.
Data Processing:
The process of preparing raw data for use in a machine learning model, including tasks such as cleaning, transforming, and normalizing the data.
Deep Learning(DL):
A subfield of machine learning that uses deep neural networks with many layers to learn complex patterns from data.
Feature Engineering:
The process of selecting and creating new features from the raw data that can be used to improve the performance of a machine learning model.
Freemium:
You might see the term "Freemium" used often on this site. It simply means that the specific tool that you're looking at has both free and paid options. Typically there is very minimal, but unlimited, usage of the tool at a free tier with more access and features introduced in paid tiers.
Generative Art:
Generative art is a form of art that is created using a computer program or algorithm to generate visual or audio output. It often involves the use of randomness or mathematical rules to create unique, unpredictable, and sometimes chaotic results.
Generative Pre-trained Transformer(GPT):
GPT stands for Generative Pretrained Transformer. It is a type of large language model developed by OpenAI.
GitHub:
GitHub is a platform for hosting and collaborating on software projects
Google Colab:
Google Colab is an online platform that allows users to share and run Python scripts in the cloud
Graphics Processing Unit(GPU):
A GPU, or graphics processing unit, is a special type of computer chip that is designed to handle the complex calculations needed to display images and video on a computer or other device. It's like the brain of your computer's graphics system, and it's really good at doing lots of math really fast. GPUs are used in many different types of devices, including computers, phones, and gaming consoles. They are especially useful for tasks that require a lot of processing power, like playing video games, rendering 3D graphics, or running machine learning algorithms.
Large Language Model(LLM):
A type of machine learning model that is trained on a very large amount of text data and is able to generate natural-sounding text.
Machine Learning(ML):
A method of teaching computers to learn from data, without being explicitly programmed.
Natural Language Processing(NLP):
A subfield of AI that focuses on teaching machines to understand, process, and generate human language
Neural Networks:
A type of machine learning algorithm modeled on the structure and function of the brain.
Neural Radiance Fields(NeRF):
Neural Radiance Fields are a type of deep learning model that can be used for a variety of tasks, including image generation, object detection, and segmentation. NeRFs are inspired by the idea of using a neural network to model the radiance of an image, which is a measure of the amount of light that is emitted or reflected by an object.
OpenAI:
OpenAI is a research institute focused on developing and promoting artificial intelligence technologies that are safe, transparent, and beneficial to society
Overfitting:
A common problem in machine learning, in which the model performs well on the training data but poorly on new, unseen data. It occurs when the model is too complex and has learned too many details from the training data, so it doesn't generalize well.
Prompt:
A prompt is a piece of text that is used to prime a large language model and guide its generation
Python:
Python is a popular, high-level programming language known for its simplicity, readability, and flexibility (many AI tools use it)
Reinforcement Learning:
A type of machine learning in which the model learns by trial and error, receiving rewards or punishments for its actions and adjusting its behavior accordingly.
Spatial Computing:
Spatial computing is the use of technology to add digital information and experiences to the physical world. This can include things like augmented reality, where digital information is added to what you see in the real world, or virtual reality, where you can fully immerse yourself in a digital environment. It has many different uses, such as in education, entertainment, and design, and can change how we interact with the world and with each other.
Stable Diffusion:
Stable Diffusion generates complex artistic images based on text prompts. It’s an open source image synthesis AI model available to everyone. Stable Diffusion can be installed locally using code found on GitHub or there are several online user interfaces that also leverage Stable Diffusion models.
Supervised Learning:
A type of machine learning in which the training data is labeled and the model is trained to make predictions based on the relationships between the input data and the corresponding labels.
Unsupervised Learning:
A type of machine learning in which the training data is not labeled, and the model is trained to find patterns and relationships in the data on its own.
Webhook:
A webhook is a way for one computer program to send a message or data to another program over the internet in real-time. It works by sending the message or data to a specific URL, which belongs to the other program. Webhooks are often used to automate processes and make it easier for different programs to communicate and work together. They are a useful tool for developers who want to build custom applications or create integrations between different software systems.
ממשק תכנות יישומים (API): API, או ממשק תכנות יישומים, הוא קבוצה של כללים ופרוטוקולים המאפשרים לתוכנות שונות לתקשר ולהחליף מידע ביניהן. הוא פועל כמעין מתווך, המאפשר לתוכניות שונות לקיים אינטראקציה ולעבוד יחד, גם אם הן אינן בנויות באמצעות אותן שפות תכנות או טכנולוגיות. ממשקי API מספקים דרך לתוכנות שונות לדבר ביניהן ולשתף נתונים, ועוזרות ליצור חווית משתמש מקושרת יותר וחלקה יותר. בינה מלאכותית (AI): האינטליגנציה שמוצגת על ידי מכונות בביצוע משימות הדורשות בדרך כלל אינטליגנציה אנושית, כגון למידה, פתרון בעיות, קבלת החלטות והבנת שפה. AI מושגת על ידי פיתוח אלגוריתמים ומערכות שיכולים לעבד, לנתח ולהבין כמויות גדולות של נתונים ולקבל החלטות על סמך הנתונים הללו. Compute Unified Device Architecture (CUDA): CUDA היא דרך שבה מחשבים יכולים לעבוד על בעיות קשות וגדולות באמת על ידי פירוקן לחתיכות קטנות יותר ופתרון כולן בו זמנית. זה עוזר למחשב לעבוד מהר יותר וטוב יותר על ידי שימוש בחלקים מיוחדים בתוכו הנקראים GPUs. זה כמו כשיש לך הרבה חברים שעוזרים לך לעשות פאזל - זה הולך הרבה יותר מהר מאשר אם אתה מנסה לעשות את זה לבד. המונח "CUDA" הוא סימן מסחרי של NVIDIA Corporation, אשר פיתחה והפכה את הטכנולוגיה לפופולרית. עיבוד נתונים: תהליך הכנת נתונים גולמיים לשימוש במודל למידת מכונה, כולל משימות כמו ניקוי, שינוי ונימול של הנתונים. למידה עמוקה (DL): תת-תחום של למידת מכונה המשתמש ברשתות עצביות עמוקות עם רבדים רבים כדי ללמוד דפוסים מורכבים מנתונים. הנדסת תכונות: תהליך הבחירה והיצירה של תכונות חדשות מהנתונים הגולמיים שניתן להשתמש בהם כדי לשפר את הביצועים של מודל למידת מכונה. Freemium: ייתכן שתראה את המונח "Freemium" בשימוש לעתים קרובות באתר זה. זה פשוט אומר שלכלי הספציפי שאתה מסתכל עליו יש אפשרויות חינמיות וגם בתשלום. בדרך כלל יש שימוש מינימלי מאוד, אך בלתי מוגבל, בכלי בשכבה חינמית עם יותר גישה ותכונות שהוצגו בשכבות בתשלום. אמנות גנרטיבית: אמנות גנרטיבית היא צורה של אמנות שנוצרת באמצעות תוכנת מחשב או אלגוריתם ליצירת פלט חזותי או אודיו. לרוב זה כרוך בשימוש באקראיות או בכללים מתמטיים כדי ליצור תוצאות ייחודיות, בלתי צפויות ולעיתים כאוטיות. Generative Pre-trained Transformer(GPT): GPT ראשי תיבות של Generative Pre-trained Transformer. זהו סוג של מודל שפה גדול שפותח על ידי OpenAI. GitHub: GitHub היא פלטפורמה לאירוח ושיתוף פעולה בפרויקטי תוכנה
Google Colab: Google Colab היא פלטפורמה מקוונת המאפשרת למשתמשים לשתף ולהריץ סקריפטים של Python בענן Graphics Processing Unit(GPU): GPU, או יחידת עיבוד גרפית, הוא סוג מיוחד של שבב מחשב שנועד להתמודד עם המורכבות חישובים הדרושים להצגת תמונות ווידאו במחשב או במכשיר אחר. זה כמו המוח של המערכת הגרפית של המחשב שלך, והוא ממש טוב לעשות הרבה מתמטיקה ממש מהר. GPUs משמשים סוגים רבים ושונים של מכשירים, כולל מחשבים, טלפונים וקונסולות משחקים. הם שימושיים במיוחד למשימות הדורשות כוח עיבוד רב, כמו משחקי וידאו, עיבוד גרפיקה תלת-ממדית או הפעלת אלגוריתמים של למידת מכונה. מודל שפה גדול (LLM): סוג של מודל למידת מכונה שאומן על כמות גדולה מאוד של נתוני טקסט ומסוגל ליצור טקסט בעל צליל טבעי. Machine Learning (ML): שיטה ללמד מחשבים ללמוד מנתונים, מבלי להיות מתוכנתים במפורש. עיבוד שפה טבעית (NLP): תת-תחום של AI המתמקד בהוראת מכונות להבין, לעבד וליצור שפה אנושית רשתות עצביות: סוג של אלגוריתם למידת מכונה המבוססת על המבנה והתפקוד של המוח. שדות קרינה עצביים (NeRF): שדות קרינה עצביים הם סוג של מודל למידה עמוקה שיכול לשמש למגוון משימות, כולל יצירת תמונה, זיהוי אובייקטים ופילוח. NeRFs שואבים השראה מהרעיון של שימוש ברשת עצבית למודל של זוהר תמונה, שהוא מדד לכמות האור שנפלט או מוחזר על ידי אובייקט. OpenAI: OpenAI הוא מכון מחקר המתמקד בפיתוח וקידום טכנולוגיות בינה מלאכותית שהן בטוחות, שקופות ומועילות לחברה. Overfitting: בעיה נפוצה בלמידת מכונה, שבה המודל מתפקד היטב בנתוני האימון אך גרועים בחדשים, בלתי נראים. נתונים. זה מתרחש כאשר המודל מורכב מדי ולמד יותר מדי פרטים מנתוני האימון, כך שהוא לא מכליל היטב. הנחיה: הנחיה היא פיסת טקסט המשמשת לתכנון מודל שפה גדול ולהנחות את הדור שלו Python: Python היא שפת תכנות פופולרית ברמה גבוהה הידועה בפשטות, בקריאות ובגמישות שלה (כלי AI רבים משתמשים בה) למידת חיזוק: סוג של למידת מכונה שבה המודל לומד על ידי ניסוי וטעייה, מקבל תגמולים או עונשים על מעשיו ומתאים את התנהגותו בהתאם. מחשוב מרחבי: מחשוב מרחבי הוא השימוש בטכנולוגיה כדי להוסיף מידע וחוויות דיגיטליות לעולם הפיזי. זה יכול לכלול דברים כמו מציאות רבודה, שבה מידע דיגיטלי מתווסף למה שאתה רואה בעולם האמיתי, או מציאות מדומה, שבה אתה יכול לשקוע במלואו בסביבה דיגיטלית. יש לו שימושים רבים ושונים, כמו בחינוך, בידור ועיצוב, והוא יכול לשנות את האופן שבו אנו מתקשרים עם העולם ואחד עם השני. דיפוזיה יציבה: דיפוזיה יציבה מייצרת תמונות אמנותיות מורכבות המבוססות על הנחיות טקסט. זהו מודל AI של סינתזת תמונות בקוד פתוח הזמין לכולם. ניתן להתקין את ה-Stable Diffusion באופן מקומי באמצעות קוד שנמצא ב-GitHub או שישנם מספר ממשקי משתמש מקוונים הממנפים גם מודלים של Stable Diffusion. למידה מפוקחת: סוג של למידת מכונה שבה נתוני האימון מסומנים והמודל מאומן לבצע תחזיות על סמך היחסים בין נתוני הקלט והתוויות המתאימות. למידה ללא פיקוח: סוג של למידת מכונה שבה נתוני האימון אינם מסומנים, והמודל מאומן למצוא דפוסים ויחסים בנתונים בעצמו. Webhook: Webhook הוא דרך של תוכנת מחשב אחת לשלוח הודעה או נתונים לתוכנית אחרת דרך האינטרנט בזמן אמת. זה עובד על ידי שליחת ההודעה או הנתונים לכתובת URL ספציפית, השייכת לתוכנית האחרת. Webhooks משמשים לעתים קרובות כדי להפוך תהליכים לאוטומטיים ולהקל על תוכניות שונות לתקשר ולעבוד יחד. הם כלי שימושי למפתחים שרוצים לבנות יישומים מותאמים אישית או ליצור אינטגרציות בין מערכות תוכנה שונות.
WELCOME TO THE