Равноускоренное движение — движение, при котором ненулевой вектор ускорения остаётся неизменным по модулю и направлению.
Примером такого движения является движение тела, брошенного под углом
к горизонту в однородном поле силы тяжести — тело движется с постоянным ускорением , направленным вертикально вниз.
При равноускоренном движении по прямой скорость тела определяется формулой:
Зная, что , найдём формулу для определения координаты x:
Примечание. Равнозамедленным можно назвать движение, при котором модуль скорости равномерно уменьшается со временем (если вектора
и противонаправлены). Равнозамедленное движение также является равноускоренным.
,
Криволинейное равноускоренное (равнопеременное) движение также можно рассматривать как одномерное. В этом случае используется обобщённая координата S, часто называемая путём. Эта координата соответствует длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:
,
где
— тангенциальное ускорение, которое «отвечает» за изменение модуля скорости тела.
Из вышеприведенных формул можно получить выражения для определения конечной скорости тела, при известных начальной скорости, ускорении и перемещении:
В случае криволинейного равноускоренного движения имеем:
Аналогичные соотношения можно записать для выражений:
;
.
И найти конечную скорость по теореме Пифагора
.