В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур (рис. 2.2.1).
Рисунок 2.2.1.
Последовательный RLC-контур
Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер.
Закон Ома для замкнутой RLC-цепи, не содержащей внешнего источника тока, записывается в виде
где – напряжение на конденсаторе, q – заряд конденсатора, – ток в цепи. В правой части этого соотношения стоит ЭДС самоиндукции катушки. Если в качестве переменной величины выбрать заряд конденсатора q (t), уравнение, описывающее свободные колебания в RLC-контуре, может быть приведено к следующему виду:
Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Тогда
(*)
Здесь принято обозначение: Уравнение (*) описывает свободные колебания в LC-контуре в отсутствие затухания. По виду оно в точности совпадает с уравнением свободных колебаний груза на пружине в отсутствие сил трения (ч. I, § 2.2). Рис. 2.2.2 иллюстрирует аналогию процессов свободных электрических и механических колебаний. На рисунке приведены графики изменения заряда q (t) конденсатора и смещения x (t) груза от положения равновесия, а также графики тока J (t) и скорости груза υ (t) за один период
колебаний.
Рисунок 2.2.2.
Аналогия процессов свободных электрических и механических колебаний
Сравнение свободных колебаний груза на пружине и процессов в электрическом колебательном контуре позволяет сделать заключение об аналогии между электрическими и механическими величинами. Эти аналогии представлены в таблице 1.
Электрические величины
Механические величины
Заряд конденсатора
Ток в цепи
Индуктивность
Величина, обратная электроемкости
Напряжение на конденсаторе
Энергия электрического поля конденсатора
Магнитная энергия катушки
Магнитный поток
q (t)
Координата
Скорость
Масса
Жесткость
Упругая сила
Потенциальная энергия пружины
Кинетическая энергия
Импульс
x (t)
L
m
k
kx
LI
mυ
Таблица 1
В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону
q(t) = q0 cos(ωt + φ0).
Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний
Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре (рис. 2.2.1) после переключения ключа K в положение 2, q0 = C
, φ0 = 0.
При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:
Все реальные контуры содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис. 2.2.3).
Рисунок 2.2.3.
Затухающие колебания в контуре