Реликтовое излучение (физика)

Данная статья была написана Владимиром Горунович для данного сайта и сайта "Викизнание".

Реликтовое излучение (ист.) или более правильно фоновое космическое микроволновое излучение (англ. cosmic microwave background radiation) — космическое электромагнитное излучение приходящее не из звезд Вселенной, со спектром, характерным для абсолютно чёрного тела с температурой 2,725 К и с высокой степенью изотропности. Максимум излучения приходится на частоту 160,4 ГГц, что соответствует длине волны 1,9 мм.

Существование фонового космического (реликтового) излучения было предсказано теоретически в рамках гипотезы Большого взрыва. В рамках данной гипотезы предполагается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно её заполняет. Наряду с космологическим красным смещением, фоновое космическое (реликтовое) излучение рассматривается частью физиков как одно из подтверждений гипотезы Большого взрыва.

В настоящее время физика утверждает о наличии у фонового космического (реликтового) излучения других источников, отличных от Большого взрыва. Поэтому историческое название данного излучения неправильно отражает его природу и вводит в заблуждение. Об этом говорит также тот факт, что само существование "Большого взрыва" в истории Вселенной теперь физикой отвергается, как не соответствующее природе и ее законам.

Экспериментально существование фонового космического (реликтового) излучения было подтверждено в 1965 году.

Оглавление:

    • 1 Фоновое космическое излучение и гипотеза Большого взрыва

    • 2 Фоновое космическое излучение и полевая теория

    • 3 Фоновое космическое излучение и классическая электродинамика

    • 4 Фоновое космическое излучение и закон сохранения энергии

    • 5 Природные источники фонового космического излучения

    • 6 Природный механизм образования основной компоненты фонового космического излучения

    • 7 Реликтовое излучение: Итог

1. Фоновое космическое излучение и гипотеза Большого взрыва

Согласно гипотезе Большого Взрыва, ранняя Вселенная представляла собой горячую плазму, состоящую из протонов, нейтронов, электронов и фотонов (т.е. из барионов, одного из лептонов и фотонов). Утверждается, что благодаря эффекту Комптона фотоны постоянно взаимодействовали с остальными частицами плазмы (протонами, нейтронами и электронами), испытывая с ними упругие столкновения и обмениваясь энергией. Таким образом, излучение должно было находиться в состоянии теплового равновесия с веществом, а его спектр соответствовать спектру абсолютно чёрного тела.

По мере предполагаемого гипотезой Большого взрыва расширения Вселенной, космологическое красное смещение (как предполагается) должно было вызывать остывание плазмы, и на определённом этапе для электронов должно было стать энергетически предпочтительней, соединиться с протонами (ядрами водорода) и альфа-частицами (ядрами гелия), и сформировать атомы. Этот процесс называется рекомбинацией. Это могло случиться при температуре плазмы около 3000 К и предполагаемом примерном возрасте Вселенной 400 000 лет. С этого момента фотоны , как предполагается, перестали рассеиваться теперь уже нейтральными атомами и смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Наблюдаемая сфера, соответствующая данному моменту, в гипотезе Большого взрыва называется поверхностью последнего рассеяния. Предполагается, что это — самый удалённый объект, который можно наблюдать в электромагнитном спектре. В результате дальнейшего предполагаемого расширения Вселенной температура излучения снизилась и сейчас составляет 2,725 К. (Данные взяты из Википедии и немного доработаны).

А теперь немного критики с точки зрения физики.

Нейтроны (скрываемые за формулировкой "барионы") являются нестабильными элементарными частицами и по истечении времени (порядка 1000 секунд), каждый нейтрон распадется на протон, электрон и электронное антинейтрино. Таким образом, этот "коктейль" должен состоять из протонов, электронов, фотонов и электронных антинейтрино. В процессе распада нейтрона электронное антинейтрино, как элементарная частица, обладающая наименьшей массой покоя, заберет значительную часть энергии распада. Потом в результате столкновений в межгалактическом пространстве с другим антинейтрино обе частицы перейдут в возбужденные состояния с последующем излучением низко энергетических фотонов - фонового космического излучения. Так незнание гипотезой Большого взрыва законов природы не освобождает данную гипотезу от их действия.

А из протонов и электронов получается - только водород. В итоге должна получиться водородная Вселенная, в "реликтовом" излучении которой должны присутствовать спектральные линии водорода. Атомам гелия создаться не из чего, если не прибегать к звездам и их термоядерным реакциям. Но тогда 400 000 лет отведенных гипотезой для образования звездами гелия окажется явно недостаточно.

Расширение Вселенной никто не доказал - это всего лишь предположение, основанное на одностороннем толковании красного смещения в пользу эффекта Доплера и игнорировании взаимодействий элементарных частиц. Также является сказкой утверждение о том, что через 400 000 лет фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Тут забыли об антинейтрино, получившихся в результате распада нейтронов, и о фотон-нейтринных взаимодействиях, игнорируемых стандартной моделью. Также забыли о взаимодействиях самих антинейтрино. И, наконец, физика не нашла доказательств того, что в истории Вселенной был Большой взрыв.

Теперь почему так получилось, или точнее, почему вместо теории Большого взрыва получилась ошибочная гипотеза.

В физике необходимо быть предельно осторожным в выборе фундамента разрабатываемой теории. Заложив в фундамент разрабатываемой теории ошибочную стандартную модель, авторы пошли по неверному пути и создали ошибочную гипотезу. И в этом не их вина, что поверили сладкоголосым речам сторонников стандартной модели - а их беда. Надо было сначала задаться вопросом: а не слишком ли много у стандартной модели произвольных параметров великолепно используемых для подгонки под новые экспериментальные данные. А если еще обратить внимание на манипулирование законами природы - то все станет ясным. Но Новой физики тогда еще не было и пришлось брать то, что было - стандартную модель.

Так ошибка в выборе фундамента закономерно привела к ошибочному результату. Для физики все это очевидно, но возможно для космологии это в новинку. И если так - то космологии предстоит пройти курс обучения уважению законов природы со строгим учителем под названием "Природа", как это в свое время было с физикой. Правда надо отметить, что небольшая часть физики (физика элементарных частиц) с упорством, достойным лучшего применения, пытается управлять законом сохранения энергии вопреки природе. А что из этой шалости получилось - теперь хорошо видно: сказочные "теории".

Таким образом, фоновое космическое излучение, называемое по ошибке "реликтовым", не было создано Большим взрывом и у него должны быть в природе иные источники.

2. Фоновое космическое излучение и полевая теория

Полевая теория элементарных частиц в качестве одного из источников фонового космического излучения предлагает взаимодействия нейтрино (антинейтрино), в гигантских количествах испускаемых звездами. Поскольку нейтрино благодаря ее чрезвычайной легкости (не более 0,052эВ) уносится существенная часть энергии термоядерного синтеза, то они движутся с релятивистскими скоростями и с легкостью покидают не только систему звезды, но и галактику. Сталкиваясь в межгалактическом пространстве с нейтрино от других звезд, элементарные частицы переходят в возбужденные состояния. Затем по истечении определенного времени возбужденные нейтрино переходят в состояния с меньшей энергией с испусканием низко энергетических фотонов. При этом излучение фотонов происходит в межгалактическом пространстве. Таким образом, создается иллюзия появления электромагнитного излучения из ничего (кажущееся нарушение закона сохранения энергии) или из далекого прошлого (Большой взрыв).

Следующим источником фонового космического излучения является взаимодействие фотона с нейтрино. Фотоны светового, ультрафиолетового или инфракрасного диапазона, столкнувшись с нейтрино, отдают ему малую, но отличную от нуля часть своей энергии. Вследствие этого с одной стороны нейтрино переходит в возбужденное состояние с последующим испусканием кванта микроволнового излучения, а с другой стороны падает энергия сталкивающегося фотона - т.е. создается красное смещение. Следовательно, механизм образования красного смещения является одним из источников фонового космического излучения.

Еще одним источником фонового космического излучения являются реакции аннигиляции пар элементарных частиц - это аннигиляция пары "нейтрино-антинейтрино", сюда можно также добавить пару "электрон-позитрон".

Таким образом, фоновое космическое (реликтовое) излучение должно включать в себя электромагнитное излучение возбужденных нейтрино (антинейтрино), при их переходах в состояния с меньшей энергией. Сегодня физика не в состоянии измерить ни массу покоя электронного и мюонного нейтрино, ни энергии их возбужденных состояний. Поэтому физика сегодня не может однозначно сказать является ли фоновое космическое (реликтовое) излучение в основном результатом столкновений нейтрино, или у него есть еще иные существенные компоненты.


3. Фоновое космическое излучение и классическая электродинамика

Классическая электродинамика утверждает, что любое электромагнитное излучение, в том числе и фоновое космическое излучение, может быть создано только при условии обязательного выполнения законов электромагнетизма, а также других законов природы. Это излучение может быть создано только электромагнитными полями элементарных частиц, или их соединений (атомами, молекулами, ионами и др.). При этом созданное излучение будет взаимодействовать с электромагнитными полями других элементарных частиц всегда и независимо от "стадии создания Вселенной". - Если есть Вселенная то, следовательно, существуют и законы Вселенной, в том числе и законы электромагнетизма, как неотъемлемая часть Вселенной.

Остывание плазмы, находящейся в тепловом равновесии, возможно лишь в том случае если кинетическая энергия будет расходоваться, например, на образование новых пар "частица-античастица". Но тогда вместе с веществом будет создаваться и антивещество со всеми вытекающими отсюда последствиями и будущими вселенскими катаклизмами. А расширение Вселенной необходимо не постулировать, а доказать.

В статье Большой взрыв были показаны противоречия классической электродинамики и гипотезы Большого взрыва. Следовательно, фоновое космическое (реликтовое) излучение должно иметь природные источники, отличные от Большого взрыва.

4. Фоновое космическое излучение и закон сохранения энергии

Согласно закону сохранения энергии (продолжающему действовать в природе) электромагнитное излучение (к которым относится и фоновое космическое излучение) не может быть создано из не существующих в природе форм энергии в результате гипотетического Большого взрыва, а также в результате гипотетических квантовых флуктуаций в вакууме. У фонового космического излучения должны быть природные источники, например: взаимодействия, реакции и превращения элементарных частиц (излучаемых звездами).

5. Природные источники фонового космического излучения

Поскольку физикой отвергается возможность Большого взрыва, то фоновое космическое излучение не может быть реликтовым излучением. Следовательно, у фонового космического излучения должны быть природные источники.

К числу возможных природных источников фонового космического излучения физика предлагает следующие источники:

    • излучения возбужденных нейтрино (как электронных, так и мюонных),

    • реакция аннигиляции пары электронных нейтрино-антинейтрино,

    • реакции распада мюонного нейтрино в электронное с испусканием фотонов (нейтринные осцилляции),

    • излучения отдельных атомов или молекул,

    • излучения молекул нейтринного газа (связанных состояний из нескольких электронных нейтрино).

При этом нейтрино будет переходить в возбужденные состояния как от столкновения с другим нейтрино, так и от прохождение через нейтрино фотонов видимого, ультрафиолетового, инфракрасного и других диапазонов, для которых энергия фотона превосходит величину энергии возбуждения нейтрино. Тем самым источником возбуждения нейтрино является и свет, идущий от удаленных галактик, т.е. красное смещение.

6. Природный механизм образования основной компоненты фонового космического микроволнового излучения (статья в разработке)

Сегодня физика установила природный механизм образования основной компоненты фонового космического микроволнового излучения и, следовательно, один из его основных природных источников.

Для того, чтобы понять это, посмотрим на карту фонового космического излучения (подлинную, без подгонки под "реликтовое излучение"), помещенную в начале статьи (в верху). Как видим, ее рассекает пополам красная горизонтальная полоса, отражающая тот факт, что наибольшее регистрируемое излучение исходит из нашей галактики. Следовательно, в нашей галактике идут природные процессы, создающие фоновое космическое излучение. Аналогичные процессы идут и в других галактиках, а также (более слабо) в межгалактическом пространстве.

А теперь зададимся вопросом: в результате чего в межзвездном, или межгалактическом пространстве, может возникнуть данное излучение. Для этого обратим внимание на , плохо изученную физикой "неуловимую" элементарную частицу и ее молекулярные соединения.

Согласно полевой теории элементарных частиц электронное нейтрино должно взаимодействовать с другими электронными нейтрино своими электромагнитными полями. Пример потенциальной энергии взаимодействия пары электронных нейтрино лежащих в одной плоскости с антипараллельными спинами приведен на рисунке.

Из рисунка видно наличие потенциальной ямы глубиной 1,54×10-3 ev с минимумом на расстоянии 8,5×10-5 см. Как видим, пара электронных нейтрино должна обладать связанным состоянием с нулевым спином с энергией порядка 0,72×10-3 ev (более точную величину можно определить с помощью квантовой механики).

Это связанное состояние будет напоминать молекулу водорода с той разницей, что в данной «молекуле» (νe2) нейтрино взаимодействуют своими электромагнитными полями. В результате крайне малой величины энергии связи молекула νe2 будет устойчивой в условиях близких к абсолютному холоду и при отсутствии столкновений с другими электронными нейтрино и не только.

Электронные нейтрино могут образовывать и более сложные связанные состояния, с большей величиной энергии связи, например νe4 (и др.). В результате во Вселенной должна существовать нейтринная форма материи в виде нейтринного газа, состоящего в основном из молекул νe2, значительно реже νe4.

И этот нейтринный газ будет взаимодействовать как со светом (создавая красное смещение), так и с электронными нейтрино, излучаемыми в огромных количествах звездами. В результате такого взаимодействия молекулярные соединения электронных нейтрино разбиваются на части. А при обратном процессе - слиянии пары электронных нейтрино в молекулярное соединение, происходит выделение энергии в виде микроволнового электромагнитного излучения с длиной волны, соответствующей основной компоненте фонового космического микроволнового излучения (996). Кроме того, при слиянии пары молекул νe2 в молекулу νe4 происходит выделение еще больше энергии, что соответствует участку спектра 34 на рисунке.

Таким образом, фоновое космическое микроволновое излучение ( по ошибке называемое "реликтовым излучением") потеряло свое божественное происхождение и обрело природные источники.

7. Реликтовое излучение: Итог

У фонового космического микроволнового излучения, исторически (по ошибке) называемого реликтовым должны быть природные источники. К одному из таких источников относятся взаимодействия нейтрино.

В целом необходимо подробно исследовать весь спектр фонового космического излучения (во всем диапазоне частот, не ограничиваясь микроволновыми частотами) и определить его составляющие, а также их возможные источники, а не заниматься сочинительством новых библейских сказок теперь уже о сотворении Вселенной. Для всяких "научных" сказок есть прекрасное место в детской литературе, если конечно последняя не захочет дать им пинка под зад как это сделала недавно, и будет продолжать делать физика.

Владимир Горунович