Электрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание".

Оглавление

    • 1 Электрон

    • 2 Электрон в полевой теории

    • 3 Радиус электрона

    • 4 Электрическое поле электрона

1 Электрон (элементарная частица)

Электрон (англ. Electron) - легчайшая элементарная частица, обладающая электрическим зарядом. Квантовое число L=1/2 (спин = 1/2) - группа лептоны, подгруппа электрона, электрический заряд -e (систематизация по полевой теории элементарных частиц). Стабильность электрона обусловлена наличием электрического заряда, иначе он бы распадался аналогично мюонному нейтрино.

2 Электрон в полевой теории

Согласно полевой теории элементарных частиц, электрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей.

Структура электромагнитного поля электрона (E-постоянное электрическое поле ,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

    • постоянное электрическое поле (E) - 0,75%,

    • постоянное магнитное поле (H) - 1,8%,

    • переменное электромагнитное поле - 97,45%.

Этим объясняются ярко выраженные волновые свойства электрона и его нежелание участвовать в ядерных взаимодействиях. Структура электрона приведена на рисунке.

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя электрона определяется как эквивалент энергии его электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Что согласуется с реально существующими в природе фундаментальными взаимодействиями и никакой сказочный бозон Хиггса массу покоя электрона не создает.

3 Радиус электрона

Полевая теория элементарных частиц определяет радиус (r) частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Радиус электрона (расстояние от центра частицы до места в котором достигается максимальная плотность массы) равен 1,98 ∙10-11 см.

Радиус области пространства занимаемой электроном:

что в два раза выше.

Электрон больше любого атомного ядра, поэтому не может присутствовать в атомных ядрах, а рождается в процессе распада нейтрона, также как позитрон (антивещество) рождается в процессе распада в ядре протона (вещества).


4 Электрическое поле электрона

Электрическое поле электрона состоит из двух областей: внешней области с отрицательным зарядом и внутренней области с положительным зарядом. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд электрона -e. В основе его квантования лежат геометрия и строение элементарных частиц.

Потенциал электрического поля электрона в точке (А) в дальней зоне (r >> re) точно, в системе СИ равен:

Напряженность E электрического поля электрона в дальней зоне (r >> re) точно, в системе СИ равна:

где n - единичный вектор из центра электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε0 - электрическая постоянная, re=r0~ - радиус электрона в полевой теории, L - главное квантовое число электрона в полевой теории, ħ - постоянная Планка, m0~ - величина массы заключенной в переменном электромагнитном поле покоящегося электрона, c - скорость света. (В системе СГС отсутствует множитель )

Данные математические выражения верны для дальней зоны электрического поля электрона: (r >> re), а голословные утверждения что "электрическое поле электрона остается кулоновским вплоть до расстояний 10-16см не имеет ничего общего с действительностью - это одна из сказок, противоречащая классической электродинамике.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы. А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой. В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков" внутри электрона - лучше если взять 8 "кварков". Понятное дело, что это выходит за рамки стандартной модели.

У электрона, как и у любой другой заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

    • электрический радиус внешнего постоянного электрического поля (заряда -1.25e) - rq-= 3.66 10-11 см.

    • электрический радиус внутреннего постоянного электрического поля (заряда +0.25e) - rq+= 3 10-12 см.

Данные характеристики электрического поля электрона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля электрона в ближней зоне.

Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

Напряженность E электрического поля электрона в ближней зоне (r ~ re), в системе СИ, как векторная сумма, приблизительно равна:

где n-=r-/r - единичный вектор из ближней (1) или дальней (2) точки заряда q- электрона в направлении точки наблюдения (А), n+=r+/r - единичный вектор из ближней (1) или дальней (2) точки заряда q+ электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до проекции точки наблюдения на плоскость электрона, q- - внешний электрический заряд -1.25e, q+ - внутренний электрический заряд +0.25e, жирным шрифтом выделены вектора, ε0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости электрона), r0 - нормировочный параметр. (В системе СГС отсутствует множитель)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (q-= -1.25e и q+= +0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r < ħ/m0~c и Z < ħ/2m0~c).

Потенциал электрического поля электрона в точке (А) в ближней зоне (r ~ re), в системе СИ приблизительно равен:

где r0 - нормировочный параметр, величина которого может отличаться от в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r < ħ/m0~c и Z < ħ/2m0~c).

Калибровку r0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля электрона.