Vinca major

Generalidades

Sinónimos: No aplican.

Nombre común: Cielo azul, cielo raso, reguilete (en la zona). Flor del cielo, hiedra (fuera de la zona).

Características generales:

  • Arbusto con una altura no muy superior a 1 metro, perenne con tallos erectos y cortos.

  • Hojas 3-8 × 2-5 cm, aovadas a lanceoladas, la mayoría glabras, en ocasiones ciliadas a lo largo de los márgenes, las nervaduras secundarias, 4-7 pares, la base redondeada a cordata, el ápice obtuso a agudo, pecíolos 1-2 cm.

  • Tiene inflorescencias axilares, pero consiste en una sola flor usualmente azul-púrpura o azul localizada en las axilas foliares alternas a lo largo del tallo; pedúnculo/pedicelo floral usualmente de 2-4 cm, curvado. Flores con los sépalos 10-18 mm, linear-triangulares, persistentes, ciliados; corola con el tubo (12-)15-20(-25) mm, expandiéndose en diámetro hacia el ápice, los lobos usualmente 15-20 × 5-12 mm, lanceolados a oblanceolados; estambres insertados cerca de la abertura del tubo de la corola; ovario con 2 nectarios, el estilo terete, delgado, la cabezuela estigmática con un borde basal y pelos apicales agrupados.

  • Frutos 2.5-3.5(-5) cm, alargados, ligeramente curvados, glabros.

  • Semillas pocas por fruto, desnudas, ligeramente comprimidas, oblongas, ligeramente foveoladas.

Usos medicinales reportados

Otro uso interesante de especies del género Vinca es la extracción de una serie de medicamentos conocidos en conjunto como alcaloides de la Vinca. Estos se utilizan para el tratamiento de diferentes formas de cáncer.

Usos farmacológicos reportados

  • Actividad anticancerígena

  • Actividad antimicrobiana

  • Actividad antiproliferativa

  • Actividad antilipasa

  • Actividad antioxidante

  • Actividad inmunológica

  • Actividad antitumoral

Bibliografías

PubMed

1. Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM, Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 2018 Sep 15;28(17):2816-2826. doi: 10.1016/j.bmcl.2018.06.044. Epub 2018 Jun 25. PMID: 30122223.

2. Sari S, Barut B, Özel A, Şöhretoğlu D. Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorg Chem. 2019 Nov;92:103259. doi: 10.1016/j.bioorg.2019.103259. Epub 2019 Sep 5. PMID: 31518762.

3. Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst. 2019 Oct;24 Suppl 2:S63-S73. doi: 10.1111/jns.12334. PMID: 31647152.

4. Arora RD, Menezes RG. Vinca Alkaloid Toxicity. 2021 Jan 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 32491774.

5. Naaz F, Haider MR, Shafi S, Yar MS. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem. 2019 Jun 1;171:310-331. doi: 10.1016/j.ejmech.2019.03.025. Epub 2019 Mar 14. PMID: 30953881.

6. Zhang Y, Yang SH, Guo XL. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother. 2017 Dec;96:659-666. doi: 10.1016/j.biopha.2017.10.041. Epub 2017 Nov 6. PMID: 29035832.

7. Zhang ZJ, Du RN, He J, Wu XD, Li Y, Li RT, Zhao QS. Three new monoterpenoid indole alkaloids from Vinca major. J Asian Nat Prod Res. 2016;18(4):328-33. doi: 10.1080/10286020.2015.1094463. Epub 2015 Dec 24. PMID: 26700398.

8. Montag G, Stopper H, Ngo QA, Hintzsche H. The Biological Activity of the Novel Vinca Alkaloids 4-chlorochablastine and 4-chlorochacristine. Curr Cancer Drug Targets. 2019;19(3):222-230. doi: 10.2174/1568009618666180430142233. PMID: 29714145.

9. Zhang D, Kanakkanthara A. Beyond the Paclitaxel and Vinca Alkaloids: Next Generation of Plant-Derived Microtubule-Targeting Agents with Potential Anticancer Activity. Cancers (Basel). 2020 Jun 29;12(7):1721. doi: 10.3390/cancers12071721. PMID: 32610496; PMCID: PMC7407961.

10. Ceresoli GL, Zucali PA. Vinca alkaloids in the therapeutic management of malignant pleural mesothelioma. Cancer Treat Rev. 2015 Dec;41(10):853-8. doi: 10.1016/j.ctrv.2015.10.006. Epub 2015 Oct 28. PMID: 26526504.

11. Kawada K, Ohta T, Fukuda H, Hayashi T, Tanaka K, Imai T, Morita Y, Miyamura M. Effect of lubiprostone on vinca alkaloid-induced constipation in patients with hematological malignancies: a propensity score-matched analysis. Ann Hematol. 2020 Oct;99(10):2429-2436. doi: 10.1007/s00277-020-04222-z. Epub 2020 Aug 24. PMID: 32839869.

12. Chagas CM, Alisaraie L. Metabolites of Vinca Alkaloid Vinblastine: Tubulin Binding and Activation of Nausea-Associated Receptors. ACS Omega. 2019 Jun 4;4(6):9784-9799. doi: 10.1021/acsomega.9b00652. PMID: 31460070; PMCID: PMC6648052.

13. Leylaie S, Zafari D. Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species From Vinca Plants. Front Microbiol. 2018 Jul 11;9:1484. doi: 10.3389/fmicb.2018.01484. PMID: 30050508; PMCID: PMC6051055.

14. Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P, Ivanov P. Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget. 2016 May 24;7(21):30307-22. doi: 10.18632/oncotarget.8728. PMID: 27083003; PMCID: PMC5058682.

15. Mavrogiannis AV, Kokkinopoulou I, Kontos CK, Sideris DC. Effect of Vinca Alkaloids on the Expression Levels of microRNAs Targeting Apoptosis-related Genes in Breast Cancer Cell Lines. Curr Pharm Biotechnol. 2018;19(13):1076-1086. doi: 10.2174/1389201019666181112103204. PMID: 30417784.

16. Saba N, Seal A. Identification of a less toxic vinca alkaloid derivative for use as a chemotherapeutic agent, based on in silico structural insights and metabolic interactions with CYP3A4 and CYP3A5. J Mol Model. 2018 Mar 4;24(4):82. doi: 10.1007/s00894-018-3611-1. PMID: 29502215.

17. Adzic M, Brkic Z, Bulajic S, Mitic M, Radojcic MB. Antidepressant Action on Mitochondrial Dysfunction in Psychiatric Disorders. Drug Dev Res. 2016 Nov;77(7):400-406. doi: 10.1002/ddr.21332. Epub 2016 Aug 19. PMID: 27539538.

Google Scholar

1. Vishwakarma, Ravikant & Yadav, Rajesh & Fatima, Neda. (2020). A HERBAL DRUG OF VINCA: USED AS A ANTICANCER AGENT. International Journal of Current Research. 11. 7979-7982. 10.24941/ijcr.37062.10.2019.

2. Martino, E., Casamassima, G., Castiglione, S., Cellupica, E., Pantalone, S., Papagni, F., … Collina, S. (2018). Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic & Medicinal Chemistry Letters, 28(17), 2816–2826. doi:10.1016/j.bmcl.2018.06.044

3. Naaz, F., Haider, M. R., Shafi, S., & Yar, M. S. (2019). Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. European Journal of Medicinal Chemistry. doi:10.1016/j.ejmech.2019.03.025

4. Zhang, Y., Yang, S.-H., & Guo, X.-L. (2017). New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomedicine & Pharmacotherapy, 96, 659–666. doi:10.1016/j.biopha.2017.10.041

5. Leylaie, S., & Zafari, D. (2018). Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species From Vinca Plants. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01484

6. Singh, S., & Kanwar, S. S. (2017). Antilipase activity guided fractionation of Vinca major. Journal of King Saud University - Science. doi:10.1016/j.jksus.2017.03.005

ScienceDirect

1. Singh, S., & Kanwar, S. S. (2017). Antilipase activity guided fractionation of Vinca major. Journal of King Saud University - Science. doi:10.1016/j.jksus.2017.03.005

2. Naaz, F., Haider, M. R., Shafi, S., & Yar, M. S. (2019). Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. European Journal of Medicinal Chemistry. doi:10.1016/j.ejmech.2019.03.025

3. Zhang, Y., Yang, S.-H., & Guo, X.-L. (2017). New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomedicine & Pharmacotherapy, 96, 659–666. doi:10.1016/j.biopha.2017.10.041

4. Banik, B. K., & Sahoo, B. M. (2020). Green synthesis and biological evaluation of anticancer drugs. Green Approaches in Medicinal Chemistry for Sustainable Drug Design, 651–712. doi:10.1016/b978-0-12-817592-7.00019-8

Springer Link

1. Snow J.W., Kao L.W., Furbee R.B. (2017) Antitubulin Agents: Colchicine, Vinca Alkaloids, and Podophyllin. In: Brent J. et al. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_138

2. Hasanpourghadi M., Pandurangan A.K., Mustafa M.R. (2017) Microtubule Targeting Agents in Cancer Therapy: Elucidating the Underlying Molecular Mechanisms. In: Farooqi A., Ismail M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_2

3. Ballout F., Habli Z., Monzer A., Rahal O.N., Fatfat M., Gali-Muhtasib H. (2019) Anticancer Alkaloids: Molecular Mechanisms and Clinical Manifestations. In: Sharma A. (eds) Bioactive Natural Products for the Management of Cancer: from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-13-7607-8_1

4. Kim KW., Roh J.K., Wee HJ., Kim C. (2016) Natural Product Anticancer Drugs. In: Cancer Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0844-7_6