Structure Substitute an organic group for the H in carboxylic acids
Nomenclature first part from alcohol, second part from acid
e.g. methyl ethanoate CH3COOCH3
Preparation From carboxylic acids
Reactivity Unreactive compared with acids and acyl chlorides
Isomerism Esters are structural isomers of carboxylic acids
Reagent(s) alcohol + carboxylic acid
Conditions reflux with a strong acid catalyst (e.g. conc. H2SO4 )
Equation e.g. CH3CH2OH(l) + CH3COOH(l) CH3COOC2H5(l) + H2O(l)
ethanol ethanoic acid ethyl ethanoate
Notes Conc. H2SO4 is a dehydrating agent - it removes water
causing the equilibrium to move to the right and thus
increases the yield of the ester
For more details see under ‘Reactions of carboxylic acids’
Hydrolysis is the opposite of esterification
ESTER + WATER CARBOXYLIC ACID + ALCOHOL
The products of hydrolysis depend on the conditions used...
acidic CH3COOCH3 + H2O CH3COOH + CH3OH
alkaline CH3COOCH3 + NaOH ——> CH3COO¯ Na+ + CH3OH
If the hydrolysis takes place under alkaline conditions,
the organic product is a water soluble ionic salt
The carboxylic acid can be made by treating the salt with HCl
CH3COO¯ Na+ + HCl ——> CH3COOH + NaCl
Despite being fairly chemically unreactive, esters are useful as ...
• flavourings apple 2-methylbutanoate
pear 3-methylbutylethanoate
banana 1-methylbutylethanoate
pineapple butylbutanoate
rum 2-methylpropylpropanoate
• solvents nail varnish remover - ethyl ethanoate
• plasticisers
Follow the following steps to make an ester:
1. Add the Alcohol
2. Add the Carboxylic Acid
3. Add a few drops of Conc. Sulphuric Acid
4. Heat the Mixture under Reflux
5*. React the mixture with Sodium Carbonate - this neutralises any excess sulphuric acid
You may then need to use Fractional Distillation to separate the mixture formed.