แนวคิด
การขึ้นการตกของดวงอาทิตย์ในเวลากลางวันและกลุ่มดาวฤกษ์ในเวลากลางคืนเป็นตัวบ่งบอกถึงกาลเวลาที่ผ่านไปในแต่ละวัน ดังนั้น การรู้จักใช้แผนที่ดาวและแผนภาพกลุ่มดาวจักราศีจะทำให้เข้าใจการขึ้นการตกของดวงอาทิตย์และกลุ่มดาวฤกษ์ได้ง่ายขึ้น นอกจากนี้การรู้จักจำแนกประเภทกล้องโทรทรรศน์จะช่วยให้สามารถเลือกกล้องโทรทรรศน์ ที่เหมาะสมกับการศึกษาเทหวัตถุบนท้องฟ้าได้ชัดเจนขึ้น
ใบความรู้สำหรับผู้จัดกิจกรรม
เรื่อง กล้องโทรทรรศน์
กล้องโทรทรรศน์ (Telescope) หรือ กล้องดูดาว เป็นทัศนูปกรณ์ซึ่งประกอบด้วย เลนส์นูนสองชุดทำงานร่วมกัน หรือ กระจกเงาเว้าทำงานร่วมกับเลนส์นูน เลนส์นูนหรือกระจกเงาเว้าขนาดใหญ่ที่อยู่ด้านใกล้วัตถุทำหน้าที่รวมแสง ส่วนเลนส์นูนที่อยู่ใกล้ตาทำหน้าที่เพิ่มกำลังขยาย การเพิ่มกำลังรวมแสงช่วยให้นักดาราศาสตร์มองเห็นวัตถุที่มีความสว่างน้อย การเพิ่มกำลังขยายช่วยให้นักดาราศาสตร์สามารถมองเห็นรายละเอียดของวัตถุมากขึ้น
กล้องโทรทรรศน์มีสามประเภท คือ กล้องโทรทรรศน์แบบหักเหแสง กล้องโทรทรรศน์แบบสะท้อนแสง และกล้องโทรทรรศน์แบบผสม กล้องส่องทางไกลชนิดสองตา มีหลักการทำงานเช่นเดียวกับกล้องโทรทรรศน์แบบหักเหแสง เพียงแต่ใช้ปริซึมหักเหแสงไปมาเพื่อลดระยะความยาวของลำกล้อง
หลักการของกล้องโทรทรรศน์
กล้องโทรทรรศน์ (Telescope) เป็นกล้องส่องทางไกลซึ่งนักดาราศาสตร์ใช้ศึกษาวัตถุท้องฟ้า มีสมบัติที่สำคัญ 2 ประการ คือ
ความสามารถในการรวมแสง - กล้องโทรทรรศน์สามารถรวมแสงได้มากกว่าดวงตาของมนุษย์ ช่วยให้สามารถมองเห็นวัตถุซึ่งมีความสว่างน้อย เช่น เนบิวลา และกาแล็กซี
ความสามารถในการขยาย - กล้องโทรทรรศน์ช่วยขยายขนาดของภาพ ทำให้มองเห็นรายละเอียดของวัตถุได้มากขึ้น เช่น หลุมบนดวงจันทร์ ดาวเคราะห์ ดาวคู่ เป็นต้น
อุปกรณ์ที่สำคัญของกล้องโทรทรรศน์คือ เลนส์นูน มีหน้าที่รวมแสงให้มาตกที่จุดโฟกัส (Focus) เราเรียกระยะทางระหว่างจุดกึ่งกลางของเลนส์กับจุดโฟกัสว่า "ความยาวโฟกัส" (Focal length)
หากใช้เลนส์นูนส่องมองวัตถุที่มีระยะใกล้กว่าความยาวโฟกัส เลนส์นูนจะช่วยในการขยายภาพ
หากใช้เลนส์นูนส่องมองวัตถุที่มีระยะไกลกว่าความยาวโฟกัส เลนส์นูนจะช่วยในการรวมแสง แล้วให้ภาพหัวกลับ ดังภาพที่ 1
ภาพที่ 1 เลนส์นูนหักเหแสงให้ภาพหัวกลับ
ฮานส์ ลิเพอร์ฮี (Hans Lipperhey) ช่างทำแว่นชาวดัตซ์ ด้ประดิษฐ์กล้องส่องทางไกลตัวแรกของโลกขึ้นในปี พ.ศ.2153 โดยการนำเลนส์นูนและเลนส์เว้ามาเรียงต่อกันโดยมีระยะห่างเท่ากับความยาวโฟกัสของเลนส์ทั้งสอง ปีต่อมา กาลิเลโอ กาลิเลโอ นักดาราศาสตร์ชาวอิตาลีได้นำกล้องส่องทางไกลแบบนี้มาใช้ศึกษาวัตถุท้องฟ้า นักวิทยาศาสตร์ในยุคต่อมาได้ปรับปรุงกล้องโทรทรรศน์โดยใช้เลนส์นูน 2 ชุด เลนส์ชุดหน้ามีขนาดใหญ่หันไปยังวัตถุที่ต้องการจะดูเรียกว่า "เลนส์ใกล้วัตถุ" (Objective Lens) มีหน้าที่รวบรวมแสง เลนส์ชุดหลังมีขนาดเล็กใช้สำหรับมองเรียกว่า "เลนส์ใกล้ตา" (Eyepieces) มีหน้าที่เพิ่มกำลังขยาย เลนส์ทั้งสองเรียงต่อกันโดยมีระยะห่างเท่ากับความยาวโฟกัสของเลนส์ใกล้วัตถุ (fo) และความยาวโฟกัสของเลนส์ใกล้ตา (fe) รวมกันหรือ fo + fe กล้องโทรทรรศน์แบบนี้ให้ภาพจริงหัวกลับดังที่แสดงในภาพที่ 2
ภาพที่ 2 การทำงานของเลนส์กล้องโทรทรรศน์
กำลังรวมแสง
สมบัติที่สำคัญที่สุดประการหนึ่งของกล้องโทรทรรศน์คือ "กำลังรวมแสง" (Light-gathering power) กล้องโทรทรรศน์ช่วยให้นักดาราศาสตร์มองเห็นวัตถุในห้วงอวกาศที่อยู่ห่างไกล เช่น เนบิวลา กระจุกดาว และกาแล็กซีต่าง ๆ ซึ่งไม่สามารถมองเห็นได้ด้วยตาเปล่า เนื่องจากแสงเดินทางมาจากระยะทางที่ไกลมาก ความเข้มของแสงจึงลดลง เลนส์ของกล้องโทรทรรศน์มีพื้นที่รับแสงได้มากกว่าดวงตาของมนุษย์ จึงมีกำลังรวมแสงมากกว่า อย่างไรก็ตามเราไม่สามารถกำหนดค่ากำลังรวมแสงของเลนส์เป็นค่าเฉพาะได้ หากแต่กำหนดด้วยการเปรียบเทียบเป็นอัตราส่วนระหว่างเลนส์สองชุด
ตัวอย่าง: เมื่อเปรียบเทียบเลนส์ของกล้องโทรทรรศน์ ซึ่งมีขนาดเส้นผ่านศูนย์กลาง 500 มิลลิเมตร กับดวงตาของมนุษย์ (กระจกตาดำ) ซึ่งมีขนาดเส้นผ่านศูนย์กลางประมาณ 5 มิลลิเมตร จะเห็นว่า เลนส์ของกล้องโทรทรรศน์มีขนาดใหญ่กว่าดวงตาของมนุษย์ = 500/5 = 100 เท่า และมีกำลังรวมแสงมากกว่า 1002 = 10,000 เท่า
กำลังขยาย
นอกจากสมบัติในการรวมแสงแล้ว นักดาราศาสตร์ยังต้องการ กำลังขยาย (Magnification)
ในการศึกษารายละเอียดของวัตถุท้องฟ้า เช่น ลักษณะของดาวเคราะห์ ระยะห่างระหว่างดาวคู่ ซึ่งเราสามารถคำนวณกำลังขยายของกล้องโทรทรรศน์ด้วยสูตร
กำลังขยาย = ความยาวของโฟกัสของเลนส์ใกล้วัตถุ/ความยาวของโฟกัสของเลนส์ใกล้ตา
= fo/fe
ตัวอย่าง: ถ้าเลนส์ใกล้วัตถุมีความยาวโฟกัส 1000 มิลลิเมตร เลนส์ใกล้ตามีความยาวโฟกัส 10 มิลลิเมตร กำลังขยายที่ได้คือ fo/fe = 1000/10 = 100 เท่า
เราสามารถเปลี่ยนกำลังขยายของกล้องโทรทรรศน์ให้เหมาะสมกับการใช้งานดังตารางที่ 1 โดยการเลือกใช้เลนส์ใกล้ตาที่มีความยาวโฟกัสมากขึ้นหรือน้อยลง อย่างไรก็ตามในทางปฏิบัติ เมื่อเพิ่มกำลังขยายขึ้น 2 เท่า ความสว่างของภาพจะลดลง 4 เท่า ขนาดของเลนส์ใกล้วัตถุเป็นตัวจำกัดกำลังขยายสูงสุด การใช้กำลังขยายสูงโดยที่เลนส์ใกล้วัตถุมีขนาดเล็กเกินไปจะได้ภาพคุณภาพต่ำและมืดเกินไป โดยปกติกำลังขยายสูงสุดที่ใช้งานได้จริงมีค่าประมาณ 50 คูณด้วยขนาดเส้นผ่านศูนย์กลางของเลนส์ใกล้วัตถุซึ่งมีหน่วยเป็นนิ้ว ตัวอย่างเช่น กล้องขนาดเส้นผ่านศูนย์กลาง 100 มิลลิเมตรหรือ 4 นิ้ว จะมีกำลังขยายที่ใช้งานได้ไม่เกิน 50 x 4 = 200 เท่า
นอกจากนั้นแม้ว่าเลนส์ใกล้วัตถุจะมีขนาดใหญ่มาก แต่เมื่อใช้กำลังขยายมากกว่า 400 เท่า จะเป็นการขยายภาพกระแสอากาศไปด้วย ภาพที่ได้จะเบลอสั่นเหมือนการมองดูปลาที่อยู่ในกระแสน้ำที่ไหลเชี่ยว ด้วยเหตุนี้นักวิทยาศาสตร์จึงสร้างกล้องโทรทรรศน์ขนาดใหญ่บนยอดภูเขาสูงที่ซึ่งมีอากาศบาง หรือส่งกล้องโทรทรรศน์ขึ้นไปอยู่ในอวกาศเพื่อให้ภาพคมชัด เนื่องจากไม่มีบรรยากาศเป็นอุปสรรคขวางกั้น
ตารางที่ 1 เปรียบเทียบกำลังขยายของกล้องโทรทรรศน์
อัตราส่วนโฟกัส
อัตราส่วนโฟกัส (Focal ratio) เป็นสมบัติที่สำคัญอีกประการหนึ่งของกล้องโทรทรรศน์ ซึ่งเป็นอัตราส่วนระหว่างเส้นผ่านศูนย์กลางของเลนส์วัตถุกับความยาวโฟกัสของเลนส์ใกล้วัตถุ ซึ่งมักแสดงด้วยอักษร f/ กำกับอยู่บนเลนส์ ตัวอย่างเช่น
เลนส์เส้นผ่านศูนย์กลาง 100 มิลลิเมตร ความยาวโฟกัส 500 มิลลิเมตร มีอัตราส่วนโฟกัส f/5
เลนส์เส้นผ่านศูนย์กลาง 100 มิลลิเมตร ความยาวโฟกัส 1,000 มิลลิเมตร มีอัตราส่วนโฟกัส f/10
การออกแบบกล้องโทรทรรศน์ให้เหมาะสมกับการใช้งาน ขึ้นอยู่กับการเลือกใช้เลนส์ใกล้วัตถุที่มีอัตราส่วนโฟกัสดังนี้
เลนส์นูนหรือกระจกเว้าที่มีค่า f/ น้อย (f/3 - f/7) มีกรวยรับแสงกว้าง ให้กำลังขยายต่ำ แต่ให้ภาพสว่าง เหมาสำหรับใช้ดูวัตถุขนาดใหญ่ที่มีความสว่างน้อย เช่น กาแล็กซี
เลนส์นูนหรือกระจกเว้าที่มีค่า f/ มาก (f/8 - f/15) มีกรวยรับแสงแคบ ให้กำลังขยายสูง แต่ให้ภาพไม่สว่าง เหมาะสำหรับใช้ดูวัตถุขนาดเล็กที่มีความสว่างมาก เช่น ดาวเคราะห์
หมายเหตุ:
ห้ามใช้กล้องโทรทรรศน์ส่องมองดูดวงอาทิตย์ โดยปราศจากแผ่นกรองแสงอาทิตย์ที่มีคุณภาพโดยเด็ดขาด เนื่องจากอาจทำให้ตาบอดได้
ประเภทของกล้องโทรทรรศน์
ภาพที่ 1 กล้องโทรทรรศน์แบบหักเหแสง
เลนส์ที่ใช้ในกล้องโทรทรรศน์เป็นเลนส์อรงค์ (Achromatic lens) ซึ่งมีสมบัติในการแก้ความคลาดสี แสงที่ตาเห็น (Visible light) เป็นคลื่นแม่เหล็กไฟฟ้าซึ่งมีความยาวคลื่นตั้งแต่ 400 - 700 นาโนเมตร สีม่วงมีความยาวคลื่นสั้นที่สุด สีแดงมีความยาวคลื่นมากที่สุด เมื่อแสงมีความยาวคลื่นไม่เท่ากันถูกหักเหผ่านเลนส์ จุดโฟกัสที่เกิดขึ้นจึงไม่ใช่จุดเดียวกันทำให้เกิด "ความคลาดสี" (Chromatic aberration) ดังภาพที่ 2 เมื่อนำมาส่องก็จะมองเห็นขอบวัตถุเป็นสีรุ้ง ดังนั้นหากนำมาส่องมองดาวก็จะไม่ทราบเลยว่า ดาวที่ดูอยู่นั้นแท้ที่จริงเป็นสีอะไร ดังนั้นนักวิทยาศาสตร์จึงออกแบบเลนส์อรงค์ขึ้นมาโดยใช้แก้วคราวน์ (Crown) และแก้วฟลินท์ (Flint) ซึ่งมีดัชนีการหักเหแสงตรงข้ามกัน มาประกบกันเพื่อทำให้แสงทุกความยาวคลื่นหักเหมารวมที่จุดโฟกัสเดียวกันดังภาพที่ 3 เลนส์อรงค์มีน้ำหนักมากและราคาแพงมาก การประดิษฐ์กล้องโทรทรรศน์ขนาดใหญ่จึงเลี่ยงไปใช้กระจกเว้าแทน
ภาพที่ 2 ความคลาดสีซึ่งเกิดขึ้นจากเลนส์เดี่ยว
ภาพที่ 3 เลนส์อรงค์ช่วยลดความคลาดสี
2. กล้องโทรทรรศน์แบบสะท้อนแสง
กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector telescope) ถูกคิดค้นโดย เซอร์ ไอแซค นิวตัน บางครั้งจึงถูกเรียกว่า "กล้องโทรทรรศน์แบบนิวโทเนียน" (Newtonian telescope) กล้องโทรทรรศน์แบบนี้ใช้กระจกเว้าทำหน้าที่เลนส์ใกล้วัตถุแทนเลนส์นูน รวบรวมแสงส่งไปยังกระจกทุติยภูมิซึ่งเป็นกระจกเงาระนาบขนาดเล็กติดตั้งอยู่ในลำกล้อง สะท้อนลำแสงให้ตั้งฉากออกมาที่เลนส์ตาที่ติดตั้งอยู่ที่ด้านข้างของลำกล้อง ดังภาพที่ 4
ภาพที่ 4 กล้องโทรทรรศน์แบบสะท้อนแสง
กล้องโทรทรรศน์ขนาดใหญ่ส่วนมากเป็นกล้องโทรทรรศน์สะท้อนแสง เนื่องจากกระจกเว้ามีน้ำหนักเบาและราคาถูกกว่าเลนส์อรงค์ นอกจากนั้นกระจกเว้ายังสามารถสร้างให้มีความยาวโฟกัสสั้นได้ง่าย หอดูดาวจึงนิยมติดตั้งกล้องโทรทรรศน์แบบสะท้อนแสงขนาดใหญ่ซึ่งมีกำลังรวมแสงสูง ทำให้สามารถสังเกตเห็นวัตถุที่มีความสว่างน้อยและอยู่ไกลมาก เช่น เนบิวลาและกาแล็กซี อย่างไรก็ตามเมื่อเปรียบเทียบกล้องโทรทรรศน์แบบหักเหแสงกับกล้องโทรทรรศน์แบบสะท้อนแสงที่มีขนาดเท่ากัน กล้องโทรทรรศน์แบบหักเหแสงจะให้ภาพสว่างและคมชัดกว่า เนื่องจากกล้องโทรทรรศน์แบบสะท้อนแสงมีกระจกทุติยภูมิอยู่ในลำกล้องซึ่งเป็นอุปสรรคขวางทางเดินของแสง ทำให้ความสว่างของภาพลดลง นอกจากนั้นภาพที่เกิดจากหักเหผ่านเลนส์อรงค์ยังมีความคมชัดและสว่างกว่าภาพที่ได้จากการสะท้อนของกระจกเว้า
3. กล้องโทรทรรศน์ชนิดผสม
กล้องโทรทรรศน์แบบผสม (Catadioptic telescope) เป็นกล้องโทรทรรศน์แบบสะท้อนแสงที่ใช้การสะท้อนแสงกลับไปมาเพื่อให้ลำกล้องมีขนาดสั้นลง โดยใช้กระจกนูนเป็นกระจกทุติยภูมิช่วยบีบลำแสงทำให้ลำกล้องสั้นกระทัดรัด แต่ยังคงกำลังขยายสูงดังภาพที่ 5 อย่างไรการทำงานของกระจกนูนทำให้ภาพที่เกิดขึ้นบนระนาบโฟกัสมีความโค้ง จึงจำเป็นต้องติดตั้งเลนส์ปรับแก้ (Correction plate) ไว้ที่ปากลำกล้องเพื่อทำงานร่วมกับกระจกทุติยภูมิ ในการชดเชยความโค้งของระนาบโฟกัส โดยที่เลนส์ปรับแก้ไม่ได้มีอิทธิพลต่อกำลังรวมแสงและกำลังขยายเลย
ภาพที่ 5 กล้องโทรทรรศน์ชนิดผสม
กล้องโทรทรรศน์แบบผสมถูกออกแบบขึ้นมาเพื่อให้มีลำกล้องสั้นและสะดวกในการติดตั้งอุปกรณ์ เช่น เลนส์ตาหรือกล้องถ่ายภาพไว้ที่ด้านหลังของกล้อง (ดังเช่นกล้องโทรทรรศน์แบบหักเหแสง) กล้องโทรทรรศน์แบบนี้มีความยาวโฟกัสมากเหมาะสำหรับใช้สำรวจวัตถุขนาดเล็ก เช่น ดาวเคราะห์ เนบิวลาและกาแล็กซีที่อยู่ห่างไกล แต่ไม่เหมาะสำหรับการสังเกตวัตถุขนาดใหญ่ เช่น กระจุกดาวเปิด เนบิวลา และกาแล็กซีที่อยู่ใกล้ กล้องโทรทรรศน์แบบผสมเป็นที่นิยมในหมู่นักดูดาวสมัครเล่นเพราะมีขนาดกระทัดรัด ขนย้ายสะดวก แต่ไม่เหมาะสำหรับใช้ในงานวิจัยทางวิทยาศาสตร์ เนื่องจากเลนส์ปรับแก้ที่อยู่ด้านหน้ากรองรังสีบางช่วงความยาวคลื่นออกไป