オープンキャンパス2025/6/15
安定とは、システムが発散しないことである。システムが発散するとは、そのシステムの持つ量や状態が時間の推移につれて有限に収まらないことで、物理的なシステムならやがて破綻し破壊などをおこす。有限で有界な入力を仮定したとき、無限時間後にシステムが発散しないとき、安定であるという。安定の様子とその挙動を安定性という。
安定性には静的な安定と、動的な安定がある。
静的安定は、入力の変化(外乱)がないと仮定した時ときシステムが安定になることである。たとえば、ビンを立てて置いた状態が静的に安定な状態である。
動的安定は、外乱を仮定して入力や状態が変化したとしても、ある状態に戻そうとし収束する復原力が働くことである。たとえば、ブランコは、揺らしてしばらく様子を見ているとやがて揺れが小さくなり、元の状態に落ち着いていくことから、動的安定である。
静的な安定は一定以上の外乱が加わると安定状態を保つことができなくなる。立てたビンに横から力を加えるとある時点で転倒する。
振動は、安定と不安定とは少し異なる状態である。ブランコのように振動しながら揺れが小さくなりやがて静止する(状態が収束する)とき、振動的に動的安定といえる。いっぽう自動車の運転を誤り、ハンドルを取られて蛇行がどんどん大きくなり(状態が発散する)やがて破綻するようなとき、振動的に不安定という。同じ規模の振動が収束も発散もせず続くことを狭義の振動状態という。
とくにカオスを含んだシステムでは、不規則だが全体としては収束も発散もしない有界な範囲での不規則振動を続けることがある。このような振動をリミットサイクルという。惑星運動を精密に見ると、ほぼ円軌道だが、周辺の星の重力の干渉により複雑な変化を含んでいるカオス振動をしている。