References:
1) K. L. Seib, X. Zhao, R. Rappuoli, Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical Microbiology and Infection 18, 109-116 (2012).
2) P. Jungblut et al., Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Molecular microbiology 33, 1103-1117 (1999).
3) A. S. Nouwens et al., Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. ELECTROPHORESIS: An International Journal 21, 3797-3809 (2000).
4) P. M. Pinto, C. S. Klein, A. Zaha, H. B. Ferreira, Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome science 7, 45 (2009).
5) F. Zakham, O. Aouane, D. Ussery, A. Benjouad, M. M. Ennaji, Computational genomics-proteomics and Phylogeny analysis of twenty one mycobacterial genomes (Tuberculosis & non Tuberculosis strains). Microbial informatics and experimentation 2, 7 (2012).
6) D. Maione et al., Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309, 148-150 (2005).
7) L. Zeng et al., A novel pan-genome reverse vaccinology approach employing a negative-selection strategy for screening surface-exposed antigens against leptospirosis. Frontiers in microbiology 8, 396 (2017).
8) E. Bencurova, S. K. Gupta, E. Oskoueian, M. Bhide, T. Dandekar, Omics and bioinformatics applied to vaccine development against Borrelia. Molecular omics 14, 330-340 (2018).
9) S. K. Dhanda et al., Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Briefings in bioinformatics 18, 467-478 (2017).
10) G. P. Monterrubio-López, R. M. Ribas-Aparicio, Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed research international 2015 (2015).
11) J. Zhang et al., Association between vaccination for herpes zoster and risk of herpes zoster infection among older patients with selected immune-mediated diseases. Jama 308, 43-49 (2012).
12) N. I. Cardona, D. M. Moncada, J. E. Gómez-Marin, A rational approach to select immunogenic peptides that induce IFN-γ response against Toxoplasma gondii in human leukocytes. Immunobiology 220, 1337-1342 (2015).
13) C. Xu, D. Tao, C. Xu (2015) Multi-view self-paced learning for clustering. in Twenty-Fourth International Joint Conference on Artificial Intelligence.
14) S. D. Allard et al., A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic
15) S. J. Goodswen, P. J. Kennedy, J. T. Ellis, Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology. Bioinformatics 30, 2381-2383 (2014).
16) B. Schubert, H.-P. Brachvogel, C. Jürges, O. Kohlbacher, EpiToolKit—a web-based workbench for vaccine design. Bioinformatics 31, 2211-2213 (2015).
17) K. Marciniuk, B. Trost, S. Napper, EpIC: a rational pipeline for epitope immunogenicity characterization. Bioinformatics 31, 2388-2390 (2015).
18) M. Dalsass, A. Brozzi, D. Medini, R. Rappuoli, Comparison of open-source reverse vaccinology programs for bacterial vaccine antigen discovery. Frontiers in immunology 10, 113 (2019).
19) S. Vivona, F. Bernante, F. Filippini, NERVE: new enhanced reverse vaccinology environment. BMC biotechnology 6, 35 (2006).
20) I. A. Doytchinova, D. R. Flower, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics 8, 4 (2007).
21) Y. He, Z. Xiang, H. L. Mobley, Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. BioMed Research International 2010 (2010).
22) B. N. Bowman et al., Improving reverse vaccinology with a machine learning approach. Vaccine 29, 8156-8164 (2011).
23) A. I. Heinson et al., Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. International journal of molecular sciences 18, 312 (2017).
24) V. Jaiswal, S. K. Chanumolu, A. Gupta, R. S. Chauhan, C. Rout, Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC bioinformatics 14, 211 (2013).
25) M. Rizwan et al., VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC bioinformatics 18, 106 (2017).