Octave es un software libre de cálculo numérico que ofrece un entorno de programación compatible con MATLAB. Se utiliza principalmente para:
🔢 Realizar cálculos matemáticos avanzados: Álgebra lineal, cálculos matriciales, ecuaciones diferenciales, integrales, etc.
📈 Crear gráficos y visualizaciones: Generar gráficos 2D y 3D para análisis de datos.
📊 Procesar datos: Manipulación y análisis de grandes conjuntos de datos.
📋 Automatizar cálculos: Desarrollar scripts y funciones para tareas repetitivas.
💻 Simulación y modelado: Particularmente útil en áreas de ingeniería, física, matemática y economía.
SUMA
>> 10+5
ans = 15
>> 20.3+5
ans = 25.300
>> 142+14528
ans = 14670
>> 28+33
ans = 61
>> 0.5+0899
ans = 899.50
>> 17+81
ans = 98
>> 32+1456
ans = 1488
>> 14+2
ans = 16
>> 39+6
ans = 45
>> 4+5
ans = 9
>> 5+3
ans = 8
RESTA
>> 30-45
ans = -15
>> 145-38.65
ans = 106.35
>> 14-2
ans = 12
>> 22-22
ans = 0
>> 30-1
ans = 29
>> 14582-1456
ans = 13126
>> 123-42
ans = 81
>> 27.3-245.1
ans = -217.80
>> 478-321
ans = 157
>> 0.3-0.1
ans = 0.2000
>> 38-13
ans = 25
MULTIPLICACIÓN
>> 7*1
ans = 7
>> 7*2
ans = 14
>> 48*23
ans = 1104
>> 10*4
ans = 40
>> 13*7
ans = 91
>> 9*15
ans = 135
>> 2*4
ans = 8
>> 15*3
ans = 45
>> 12*6
ans = 72
>> 36*3.5
ans = 126
>> 14*7
ans = 98
DIVISIÓN
>> 15/3
ans = 5
>> 48/6
ans = 8
>> 136/7
ans = 19.429
>> 145/15
ans = 9.6667
>> 1265/23
ans = 55
>> 78/9
ans = 8.6667
>> 9/3
ans = 3
>> 201/11
ans = 18.273
>> 2650.45/41.2
ans = 64.331
>> 123/45
ans = 2.7333
>> 69/8
ans = 8.6250
POTENCIA
>> 25^2
ans = 625
>> 12^2
ans = 144
>> 23.6^7
ans = 4.0774e+09
>> 144^6
ans = 8.9161e+12
>> 36^9
ans = 1.0156e+14
>> 71^(-2)
ans = 1.9837e-04
>> 2^(-2)
ans = 0.2500
>> 32^(0.3)
ans = 2.8284
>> 8^7
ans = 2097152
>> 45^(1/3)
ans = 3.5569
>> 23^1/2
ans = 11.500
>> 6^2/5
ans = 7.2000
RAIZ
n=2
>> sqrt(144)
ans = 12
>> sqrt(25)
ans = 5
>> sqrt(27)
ans = 5.1962
>> sqrt(125)
ans = 11.180
n=3
>> nthroot(125,3)
ans = 5
>> nthroot(1023,3)
ans = 10.076
n=4
>> nthroot(16,4)
ans = 2
>> nthroot(1296,4)
ans = 6
n=5
>> nthroot(125,5)
ans = 2.6265
>> nthroot(200,5)
ans = 2.8854
LOGARITMO
ln=logaritmo natural
>> ln1=log(1)
ln1 = 0
>> ln10=log(1)
ln10 = 0
>> ln10=log(10)
ln10 = 2.3026
>> ln100=log(100)
ln100 = 4.6052
>> disp([ln1,ln10,ln10,ln100])
log10=logaritmo en base 10
>> log10(1)
ans = 0
>> log10(25)
ans = 1.3979
>> log10(100)
ans = 2
>> log10(100)
ans = 2
log2=logaritmo en base 2
>> log2(25)
ans = 4.6439
>> log2(200)
ans = 7.6439
>> log2(20000)
ans = 14.288
log=logaritmo en cualquier base
>> x=125;
>> b=5;
>> log5_125=log(x)/log(b);
>> disp(log5_125)
3.0000
>>>> x=27;
>> b=3;
>> log3_27=log(x)/log(b);
>> disp(log3_27)
3
e
e=elevada a un numero n
>> x=15;
>> Y=exp(3);
>> disp(y)
-2.0500e+02 + 2.5104e-14i
>> x=2;
>> y=exp(4*x);
>> disp(y)
2981.0
>> x=-23;
>> y=exp(5*x);
>> disp(x)
-23
>> x=-1/2;
>> y=exp(1/3*x);
>> disp(y)
0.8465
e=exponencial en vectores o matrices
>> A=[1;2;3;4];
>> B=exp(A);
>> disp(B)
2.7183
7.3891
20.0855
54.5982
>> A=[7;2;0;-3];
>> B=exp(A);
>> disp(B)
1.0966e+03
7.3891e+00
1.0000e+00
4.9787e-02
e elevado a ln
>> x=12;
>> y=exp(log(x));
>> disp(y)
12
>> x=-205;
>> y=exp(log(x));
>> disp(y)
-2.0500e+02 + 2.5104e-14i
DERIVADAS
De primer grado
>> pkg load symbolic
>> syms x
>> f=x^2+5;
>> df=diff(f,x);
>> disp(df)
2*x
>> syms x
>> f=3*x^2+4*x+10;
>> df=diff(f,x);
>> disp(df)
6*x + 4
>> f=5*x^4+2*x^4+x^3+6;
>> df=diff(f,x);
>> disp(df)
3 2
28*x + 3*x
De segundo grado
>> f=log(x);
>> f2=diff(f,x,2);
>> disp(f2)
-1
---
2
x
>> syms x
>> f=2*exp(x)+exp(2*x);
>> f2=diff(f,x,2);
>> disp(f2)
/ x \ x
2*\2*e + 1/*e
>> syms x
>> f=sin(x)+2*log(x)+x^3;
>> f2=diff(f,x,2);
>> disp(f2)
2
6*x - sin(x) - --
2
x
De tercer grado
>> syms x
>> f=sin(x)-cot(2*x);
>> d1=diff(f,x);
>> d2=diff(f,x,2);
>> d3=diff(f,x,3);
>> disp(d1)
2
cos(x) + 2*cot (2*x) + 2
>> disp(d2)
/ / 2 \ \
-\8*\cot (2*x) + 1/*cot(2*x) + sin(x)/
>> disp(d3)
2
/ 2 \ / 2 \ 2
16*\cot (2*x) + 1/ + 32*\cot (2*x) + 1/*cot (2*x) - cos(x)
Implícitas
>> syms x y
>> eq=3*x+2*x*y+y^4+2;
>> d_eq=diff(eq,x)+diff(eq,y)*diff(x,y);
>> dy_dx=solve(d_eq,diff(x,y));
>> disp(dy_dx)
-3/2
>> syms x y
>> eq=x^3+y^3-6*x*y;
>> d_eq=(diff(eq,x)+diff(eq,y))*diff(x,y);
>> dy_dx=solve(d_eq,diff(x,y));
>> disp(dy_dx)
{}(0x0)
INTEGRALES
Indefinidas
>> pkg load symbolic
>> syms x
>> f=x^2+3*x^5+5;
>> I=int(f,x);
>> disp(I)
6 3
x x
-- + -- + 5*x
2 3
>> syms x
>> f=sin(x)+cos(x);
>> I=int(f,x);
>> disp(I)
sin(x) - cos(x)
>> syms x
>> f=log(x)+2*x^3+15;
>> I=int(f,x);
>> disp(I)
4
x
-- + x*log(x) + 14*x
2
Definida
>> syms x
>> f=sin(x)+log(x)+4*x+x^2;
>> I=int(f,x);
>> I_def=int(f,x,0,2);
>> disp(I)
3
x 2
-- + 2*x + x*log(x) - x - cos(x)
3
>> disp(I_def)
-cos(2) + 2*log(2) + 29/3
>> syms x
>> f=2*x^3+(8*x)^1/2+sin(x);
>> I=int(f,x);
>> I_def=int(f,x,0,1);
>> disp(I)
4
x 2
-- + 2*x - cos(x)
2
>> disp(I)
4
x 2
-- + 2*x - cos(x)
2
>> disp(I_def)
7/2 - cos(1)
Por partes
>> syms x
>> u=x;
>> dv=cos(x);
>> du=diff(u,x);
>> v=int(dv,x);
>> I_partes=u*v-int(v*du,x);
>> disp(I_partes)
x*sin(x) + cos(x)
>> syms x
>> u=exp(x);
>> dv=sin(x);
>> du=diff(u,x);
>> v=int(dv,x);
>> I_partes=u*v-int(v*du,x);
>> disp(I_partes)
x x
e *sin(x) e *cos(x)
--------- - ---------
2 2
Fracciones parciales
>> syms x
>> f=(x+2)/((x-1)*(x+3));
>> I_fracciones=int(f,x);
>> disp(I_fracciones)
3*log(x - 1) log(x + 3)
------------ + ----------
4 4
>> syms x
>> f=(2*x+3)/(x^2+2*x+1);
>> I_fracciones=int(f,x);
>> disp(I_fracciones)
1
2*log(x + 1) - -----
x + 1
DERIVADAS PARCIALES
>> syms x y
>> f=x^2*y+sin(y);
>> df_dx=diff(f,x);
>> df_dy=diff(f,y);
>> disp(df_dx)
2*x*y
>> disp(df_dy)
2
x + cos(y)
F(x)
MATRIZ
>> A=[1,2,8;5,8,9;3,2,1]
A =
1 2 8
5 8 9
3 2 1
>> x=[10 20 30]
x =
10 20 30
>> x(2)
ans = 20
>> y=[5;8;9]
y =
5
8
9
>>
> u=[5,2,3];
>> v=[2,1,3];
>> w=[0;.3;6]
w =
0.00000
0.30000
6.00000
>>
>> u=[5,2,3];
>> v=[5,2,.1];
>> w=[3,-3,2];
>>
>> u+v
ans =
10.0000 4.0000 3.1000
>> v-u
ans =
0.00000 0.00000 -2.90000
OPERACIONES BÁSICAS
1
OPERACIONES BÁSICAS
2
OPERACIONES BÁSICAS
3
OPERACIONES BÁSICAS
4