import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as seabornInstancefrom sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import train_test_split#from sklearn.feature_selection import SelectFromModelfrom sklearn import metricsfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixServiceLevel = pd.read_csv("Service Level.csv")#print(ServiceLevel.head())#print(ServiceLevel.shape)#print(ServiceLevel.describe())#print(ServiceLevel.isnull().any())y = ServiceLevel['SL'].values # Create arrays for the feature variableX = ServiceLevel.drop(['SL','Date'], axis=1).values # Create arrays for the response variables#X = ServiceLevel[['Volume Offered', 'Answered', 'Call Answered Within 20 Secs', # 'Actual Staffing', 'AHT', 'MY AHT']].values # Create arrays for the response variables# Check the average value of target (SL) columnplt.figure(figsize=(15,10))plt.tight_layout()seabornInstance.distplot(ServiceLevel['SL'])#plt.show()X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42) # Split into training and test setregressor = LinearRegression()regressor.fit(X_train, y_train) # training the algorithmprint(regressor.intercept_) # retrieve the interceptprint(regressor.coef_) # retrieve the slopy_pred = regressor.predict(X_test)df = pd.DataFrame({'Actual': y_test.flatten(), 'Predicted': y_pred.flatten()})#print(df)#print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))#print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))#print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))# Mean Absolute Error: 0.0707227818477136# Mean Squared Error: 0.009289545553397342# Root Mean Squared Error: 0.09638228858767228# Predicted SLvalue = [((500*-1.62258670e-03) + (480*1.54044403e-03) + (150*2.09853820e-03) + (600*-8.34715959e-04) + (700*-9.69616262e-05)) + 1.2884114995794873]print(value)# intercept
1.2884114995794873
# slope
[-1.62258670e-03 1.54044403e-03 2.09853820e-03 -8.34715959e-04
-9.69616262e-05]
# Predicted SL
[0.9626093002394872]