import matplotlib.pyplot as plt
from pandas import DataFrame
import seaborn as sn
Data = {'A': [45,37,42,35,39],
'B': [38,31,26,28,33],
'C': [10,15,17,21,12]}
df = DataFrame(Data,columns=['A','B','C'])
corrMatrix = df.corr()
print("Correlation: ")
print(corrMatrix)
sn.heatmap(corrMatrix, annot=True)
plt.show()
Correlation:
A B C
A 1.000000 0.518457 -0.701886
B 0.518457 1.000000 -0.860941
C -0.701886 -0.860941 1.000000
import pandas as pd
df = pd.read_csv("p3_data2.tsv", "\t")
print(df.head())
ID Advertising costs Part-time Labour costs
0 1 362438 8763
1 2 51725 9258
2 3 236472 9897
3 4 232080 5005
4 5 262733 9918
df2 = df.drop(["ID"], axis=1) # the axis=1 parameter indicates that we are dropping a column.
print("Correlation")
print(df2.corr())
Correlation
Advertising costs Part-time Labour costs
Advertising costs 1.000000 -0.014986
Part-time Labour costs -0.014986 1.000000