# Make a boxplot of each petal and sepal measurement
import matplotlib.pyplot as plt
data.boxplot(column=["petal_width", "petal_length", "sepal_width", "sepal_length"],by="species", rot=90)
plt.show()
data.boxplot(by='species');
plt.show()
# Create a single boxplot where the features are separated in the x-axis and species are colored with different hues
# First we have to reshape the data so there is only a single measurement in each column
plot_data = (data
.set_index('species')
.stack()
.to_frame()
.reset_index()
.rename(columns={0:'size', 'level_1':'measurement'})
)
print(plot_data.head())
species measurement size
0 setosa sepal_length 5.1
1 setosa sepal_width 3.5
2 setosa petal_length 1.4
3 setosa petal_width 0.2
4 setosa sepal_length 4.9
# Plot the dataframe from above using Seaborn
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style('white')
sns.set_context('notebook')
sns.set_palette('dark')
f = plt.figure(figsize=(6,4))
sns.boxplot(x='measurement', y='size',
hue='species', data=plot_data);
plt.show()
# Create a pairplot with Seaborn to examine the correlation between each of the measurements
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_context('talk')
sns.pairplot(data, hue='species');
plt.show()