concatenated = pd.concat([weather_p1, weather_p2], ignore_index=True)
print(concatenated)
# Concatenate uber1, uber2, and uber3
row_concat = pd.concat([uber1,uber2,uber3]) # row-wise concatenation (default axis = 0)
print(row_concat.shape)
print(row_concat.head())
# Concatenate ebola_melt and status_country column-wise
ebola_tidy = pd.concat([ebola_melt,status_country], axis=1) #Think of column-wise concatenation of data as stitching data together from the sides
print(ebola_tidy.shape)
print(ebola_tidy.head())
import glob
import pandas as pd
pattern = '*.csv' # Write the pattern: pattern
csv_files = glob.glob(pattern) # Save all file matches
print(csv_files) # Print the file names
csv2 = pd.read_csv(csv_files[1]) # Load the second file into a DataFrame
print(csv2.head())
frames = [] # Create an empty list: frames
for csv in csv_files: # Iterate over csv files
df = pd.read_csv(csv) # Read csv into a DataFrame
frames.append(df) # Append df to frames
uber = pd.concat(frames) # Concatenate frames into a single DataFrame
print(uber.shape)
print(uber.head())