print(sales["weekly_sales"].mean())
print(sales["weekly_sales"].mode())
print(sales["weekly_sales"].median())
print(sales["date"].max()) # Print the maximum of the date column
print(sales["date"].min()) # Print the minimum of the date column
def pct30(column):
return colum.quantile(0.3)
dogs[“weight_kg”].agg(pct30)
dogs[[“weight_kg”, “height_”cm]].agg(pct30) # Summaries on multiple columns
def pct40(column):
return colum.quantile(0.4)
dogs[“weight_kg”].agg([pct30, pct40]) # Multiple summaries
import numpy as np
def iqr(column): # A custom IQR function
return column.quantile(0.75) - column.quantile(0.25)
print(sales["temperature_c"].agg(iqr)) # Update to print IQR
print(sales[["temperature_c","fuel_price_usd_per_l","unemployment"]].agg(iqr)) # Update to print IQR
print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]].agg([iqr, np.median])) # Update to print IQR and median
sales_1_1 = sales_1_1.sort_values("date", ascending=True) # Sort sales_1_1 by date
sales_1_1["cum_weekly_sales"] = sales_1_1["weekly_sales"].cumsum() # Get the cumulative sum of weekly_sales
sales_1_1["cum_max_sales"] = sales_1_1["weekly_sales"].cummax() # Get the cumulative max of weekly_sales
print(sales_1_1[["date", "weekly_sales", "cum_weekly_sales", "cum_max_sales"]])