dogs.pivot_table(values=“weight_kg”, index=“color”)
import numpy as np
dogs.pivot_table(values=“weight_kg”, index=“color”, aggfunc=np.median)
dogs.pivot_table(values=“weight_kg”, index=“color”, aggfunc=[np.mean, np.median])
dogs.pivot_table(values=“weight_kg”, index=“color”, columns=“breed”)
dogs.pivot_table(values=“weight_kg”, index=“color”, columns=“breed”, fill_value=0)
dogs.pivot_table(values=“weight_kg”, index=“color”, columns=“breed”, fill_value=0, margins=True)
# Pivot for mean weekly_sales for each store type
mean_sales_by_type = sales.pivot_table(values="weekly_sales",index="type")
print(mean_sales_by_type)
import numpy as np
# Pivot for mean and median weekly_sales for each store type
mean_med_sales_by_type = sales.pivot_table(values="weekly_sales", index="type", aggfunc=[np.mean, np.median])
print(mean_med_sales_by_type)
# Pivot for mean weekly_sales by store type and holiday
mean_sales_by_type_holiday = sales.pivot_table(values="weekly_sales",index="type", columns="is_holiday")
print(mean_sales_by_type_holiday)
# Print the mean weekly_sales by department and type; fill missing values with 0s; sum all rows and cols
print(sales.pivot_table(values="weekly_sales", index="department", columns="type", fill_value=0, margins=True))