def display_scores(scores):
print("Scores:", scores)
print("Mean:", scores.mean())
print("Standard deviation:", scores.std())
from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
tree_rmse_scores = np.sqrt(-scores)
display_scores(tree_rmse_scores)
Scores: [70274.7991723 67258.3624668 71350.42593227 68882.91340979 70987.99296566 74177.52037059 70788.57311306 70850.53018019 76430.62239321 70212.6471067 ]
Mean: 71121.4387110585
Standard deviation: 2434.3080046605132
lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)
Scores: [66877.52325028 66608.120256 70575.91118868 74179.94799352 67683.32205678 71103.16843468 64782.65896552 67711.29940352 71080.40484136 67687.6384546 ]
Mean: 68828.99948449328
Standard deviation: 2662.761570610345