The Grand Law of Nature: During any process mass-energy is exchanged and conserved, while entropy is irreversibly produced. The universe consists of local material (mass-energy) structures in forced dynamic-equilibrium and their interactions via forced fields. The forces are balanced at any time (including inertial - process rate forces) thus conserving momentum, while charges/mass and energy are transferred and conserved during forced displacement in space all the times, but energy is degraded (dissipated) as it is redistributed (transferred) from higher to lower non-equilibrium potential towards equilibrium (equi-partition of energy).
There is 'energy' (or 'mass-energy' as the building block of existence) which is conserved while transferred during forced interactive displacement (subject to the First Law of Thermodynamics: energy cannot be destroyed nor generated from nowhere); and, there is 'useful energy' or 'work potential' as the consequence and measure of a non-equilibrium (an autonomous concept) which is the cause-and-effect of forcing energy transfer from a higher to lower energy density/potential (subject to the Second Law of Thermodynamics: non-equilibrium is irreversibly dissipated in time towards equilibrium and cannot be generated from nowhere, i.e., the useful work potential is irreversibly converted to heat, and thus the entropy is always generated and in limit conserved, but cannot be destroyed - there is no way to destroy entropy. The latter is not to be confused with local entropy decrease when transferred elsewhere.
During forced energy transfer, a part (and ultimately all) of the useful energy is dissipated (irreversibly converted into thermal energy with the corresponding entropy generation). Only in limit the non-equilibrium (work potential) may be conserved during the ideal reversible processes, including localized increase of energy density/potential on the expense of decrease elsewhere (forcing advantage). .. Read more
The spontaneous forced tendency of mass-energy transfer is due to a difference or non-equilibrium in space of the mass-energy space-density or mass-energy-potential. As mass-energy is transferred from higher to lower potential, and thus conserved, the lower mass-energy potential is increased on the expense of the higher potential until the two equalize, i.e., until a lasting equilibrium is established. THAT explains a process tendency towards the common equilibrium and impossibility of otherwise (impossibility of spontaneous creation of non-equilibrium) ... Read More
Professor Kostic's teaching and research interests are in Thermodynamics (a science of energy, the Mother of All Sciences), Fluid Mechanics, Heat Transfer and related fluid-thermal-energy sciences; with emphases on physical comprehension and creative design, experimental methods with computerized data acquisition, and CFD simulation; including nanotechnology and development of new-hybrid, POLY-nanofluids with enhanced properties, as well as development, analysis and optimization of fluids-thermal-energy components and systems in power-conversion, utilizations, manufacturing and material processing. Dr. Kostic came to Northern Illinois University from the University of Illinois at Chicago, where he supervised and conducted a two-year research program in heat transfer and viscoelastic fluid flows, after working for some time in industry.
"Kostic’s unique synergy of philosophical, theoretical, computational and experimental approach, results in open mind, intense curiosity and sharp focus for identifying and analyzing natural and engineering phenomena with high motivation for problem identification, troubleshooting and solving."
Kostic graduated in 1975 (Dipl-Ing degree) with the University of Belgrade highest distinction (the highest GPA in ME program history). Then he worked as a researcher in thermal engineering and combustion at Belgrade-Vinca Institute for Nuclear Sciences, which then hosted the headquarters of the International Center for Heat and Mass Transfer, and later taught at the University of Belgrade in Serbia, ex-Yugoslavia (*). He came to the University of Illinois at Chicago in 1981 as a Fulbright grantee, where he received his Ph.D. in mechanical engineering in 1984. Subsequently, Dr. Kostic worked several years in industry. In addition, he spent three summers as an exchange visitor in England, West Germany, and the former Soviet Union.
Dr. Kostic has received recognized professional fellowships and awards, including multiple citations in Marquis' "Who's Who in the World," "Who's Who in America," "Who's Who in American Education," and "Who's Who in Science and Engineering"; the Fulbright Grant; NASA Faculty Fellowship; Sabbatical Semester at Fermi National Accelerator Laboratory as a Guest Scientist; and the summer Faculty Research Participation Program at Argonne National Laboratory. He is a frequent reviewer of professional works and books in Thermodynamics and Experimental Methods. Dr. Kostic is a licensed Professional Engineer (PE or P.Eng.) in Illinois and a member of the ASME, ASEE, and AIP's Society of Rheology. He has a number of publications in refereed journals, including invited state-of-the-art chapters in the Academic Press series Advances in Heat Transfer, Volume 19, and "Viscosity" in CRC Press' Measurement, Instrumentation and Sensors Handbook; as well as invited reference articles: Work, Power, and Energy in Academic Press/Elsevier's Encyclopedia of Energy; Extrusion Die Design in Dekker's Encyclopedia of Chemical Processing; and Energy: Global and Historical Background, and Physics of Energy, both in Taylor & Francis/CRC Press Encyclopedia of Energy Engineering and Technology. Professor Kostic is a senior member of the Graduate Faculty at Northern Illinois University (See C-Vita for more information).