эффект чайника

Вот и мне всё время интуитивно хотелось сделать сильно гидрофобным носик, чтобы... так оно и оказалось! По поводу супергидрофобности - анекдот про дырочки на крыле самолёта.

http://www.membrana.ru/lenta/?9801

Учёные придумали способы борьбы с эффектом чайника

29 октября 2009

В исследовании все процессы, происходящие при срыве струи с носика, были расписаны с математической точностью (фото и иллюстрация Duez et al.).

Носики многих чайников беспардонно протекают, стоит только немного неправильно наклонить сосуд. Это явление происходит настолько часто, что ему даже дали своё имя — "эффект чайника". Отчего так происходит и как бороться с неприятным явлением, рассказали исследователи из университета Лиона (Universit é de Lyon).

На самом деле вода начинает течь мимо чашки из-за того, что поток из носика чайника ослабевает. Физики объясняют это так: когда человек выливает жидкость, она стремится повторить изгиб края. При сильном наклоне и, соответственно, сильном потоке струя срывается с края носика, но стоит ему чуть ослабеть, и вода уже бежит по стенке носика к донцу, в конце концов проливаясь на всё вокруг.

Предыдущие исследования в этой области (и ведь заинтересовался кто-то!) показали, что очень многие факторы определяют, произойдёт ли отрыв. Среди них радиус кривизны нижнего краешка носика, скорость потока, пористость, а также намокаемость материала, из которого сделан чайник.

Французский специалист по гидродинамике Сирил Дуэс (Cyril Duez) и его коллеги задумали решить эту проблему раз и навсегда и подошли к ней комплексно. В ходе тестов выяснилось, что настоящей причиной подтекания является гидрокапиллярность, которая определяет, оторвётся ли струйка воды от носика во время выливания или нет. Все ранее перечисленные факторы так или иначе повязаны на этой характеристике.

Что же делать, чтобы "эффект чайника" пропал? Дуэс считает, что выходов два. Первый: сделать нижний краешек как можно более тонким, тогда в случае с металлическим носиком проблема станет проявляться значительно реже.

Второй (более действенный): сделать специальное супергидрофобное покрытие, оно будет отталкивать воду, заставляя струю срываться в любом случае. Эффект исчезнет. Более подробно об исследовании читайте в статье авторов, появившейся на сервере препринтов arXiv.org

Корреспондент Technology Review предположил, что данное открытие достойно Шнобелевской премии, не меньше. Заметят ли его организаторы, узнаем в будущем году.

Читайте также о покрытиях, отражающих натиск горячей воды иорганических жидкостей, а ещё ускоряющем закипание воды в чайнике.

Почувствуйте разницу: сверху показан чайник, носик которого покрыт гидрофильным веществом (притягивающим воду), снизу – с супергидрофобным покрытием. На картинках слева – поток сильный, справа – слабый. У нового сосуда вода начинает капать, вместо того чтобы стекать по стенке (фото Duez et al.).

Источник: Technology Review

Thursday, October 22, 2009

The Death of the Teapot Effect

Fluid dynamicists have worked out how to stop teapots from dribbling, once and for all.

Teapot technology is largely ignored by mainstream media (some say unfairly). But today, scientists in France unveil a technique that should breath hi-tech life into a new generation of bespouted objects.

The problem with teapots is their annoying habit of dribbling, particularly at low rates of flow. The phenomenon has achieved such notoriety that it has been imaginatively dubbed the "teapot effect".

Previous studies have shown that dribbling is the result of flow separation where the layer of fluid closest to the boundary becomes detached from it. When that happens, the fluid flows smoothly over the lip. But as the flow rate decreases, the boundary layer re-attaches to the surface causing dribbling.

Previous studies have shown that a number of factors effect this process such as the radius of curvature of the teapot lip, the speed of the flow and the "wettability" of the teapot material. But a full understanding of what's going on has so far eluded scientists.

Now Cyril Duez at the University of Lyon in France and a few amis, have identified the single factor at the heart of the problem and shown how to tackle it. They say that the culprit is a "hydro-capillary" effect that keeps the liquid in contact with the material as it leaves the lip. The previously identified factors all determine the strength of this hydro-cappillary effect.

So how to overcome it? There are two ways say Duez and co. The first is to make the lip as thin as possible. That's why teapots with spouts made from thin metal are less likely to dribble.

The second is to coat the lip with the latest generation of superhydrophobic materials which strongly repel water. Duez and co show how this stops dribbling at a stroke. "Superhydrophobic surfaces fully avoid dripping, and thus beat the "teapot effect"," they say.

(Of course, there are one or two other potential applications in shaping the fluid flow in microfluidic machines but these pale into insignificance compared with the teapot revolution in hand.)

The really exciting news, however, is that in certain materials the hydro-capillary effect can be controlled electronically. That raises the possibility of a teapot design in which dribbling can be turned on and off with the flick of a switch--an object of desire on a par with the iPhone, USB catapaults and personal hovercrafts. (The iPot, perhaps?)

If this doesn't win these guys an IgNobel, I don't know what will.

Ref: arxiv.org/abs/0910.3306: Beating the Teapot Effect

Comments

            • Coanda?
              • Isn't the Teapot effect just the Coanda effect?
                • Rate this comment:
                • (Reply)
                • Re: Coanda?
                  • It seems not, until stream of fluid isn't in direct contact with supporting wall
                    • Rate this comment:
              • Avg Rating:
                  • Avg Rating:
            • Milk jug problem
              • Can these researchers also solve the milk jug problem? I refer, of course, to the annoying habit of new-fangled flat-topped milk jugs to dribble, unless extreme care is taken when pouring.
                • Rate this comment:
              • Avg Rating:
            • hasn't this already been solved?
              • A BBC news item from 1998 informed us thatProfessor spills secret of the dripping teapot, and referred to the work of Professor Jean-Marc Vanden-Broeck, of the University of East Anglia, an expert in "fluid flow". This is far from being my field, so perhaps I'm mistaken, but I get the feeling that someone has devoted his research to something that's already been taken care of.
                • Rate this comment:
                  • Avg Rating:
            • Bloop Bleep
              • One can sing "Superhydrophobic surface fully avoids dripping" to a famous Disney tune.
                • Rate this comment:
              • Avg Rating:
                • (Reply)
                • Re: Bloop Bleep
                  • Your students better make it work or boy they'll get a whipping,
                    • Rate this comment:
                  • Avg Rating:
            • TeaPot Effect
              • there is a technological feat that has been accomplished for quite some time now. It is called a drip catcher. attach it to the top of the teapot and across the spout and handle and you will not drip. It is wonderful for those fat ceramic spouts.
                • Rate this comment:
            • [no subject]
              • In my family, we solved this problem by applying a high-tech ultrahydrophobic coating to the teapot spout.
              • The coating substance is commonly referred to as "butter".
                • Rate this comment:
              • Avg Rating:

http://arxiv.org/abs/0910.3306 There is into ..\\0910_3306\ folder

Beating the teapot effect

C. Duez, C. Ybert, C. Clanet, L. Bocquet

(Submitted on 17 Oct 2009)

We investigate the dripping of liquids around solid surfaces in the regime of inertial flows, a situation commonly encountered with the so-called "teapot effect". We demonstrate that surface wettability is an unexpected key factor in controlling flow separation and dripping, the latter being completely suppressed in the limit of superhydrophobic substrates. This unforeseen coupling is rationalized in terms of a novel hydro-capillary adhesion framework, which couples inertial flows to surface wettability effects. This description of flow separation successfully captures the observed dependence on the various experimental parameters - wettability, flow velocity, solid surface edge curvature-. As a further illustration of this coupling, a real-time control of dripping is demonstrated using electro-wetting for contact angle actuation.

Comments:

Subjects:

Cite as:

4 pages; movies at this http URL

Soft Condensed Matter (cond-mat.soft)

arXiv:0910.3306v1 [cond-mat.soft]

Submission history

From: Lyderic Bocquet [view email]

[v1] Sat, 17 Oct 2009 14:27:17 GMT (1755kb,D)

http://www-lpmcn.univ-lyon1.fr/~lbocquet/

Lydéric Bocquet - Liquids @ interfaces' group

Professeur de Physique

Membre de l'Institut Universitaire de France

Condensed Matter Lab, University of Lyon

Mail : lyderic.bocquet@univ-lyon1.fr

Tel : 04 72 44 82 53

Fax : 04 72 43 26 48

The group's research is at the interface between "soft condensed matter", "hydrodynamics" and "nano-science". It is mostly

curiosity driven. We combine experiments, theory, and molecular simulations to explore the intimate mechanisms of the dynamics

of fluid interfaces from the macroscopic down to the molecular level, with applications in the fields of material science, micro- and

nano- fluidics, large scale hydrodynamics, complex fluids, etc.

From nano- to macro- scales in fluid dynamics

Nanofluidics and interfacial transport

Superhydrophobic surfaces

- Beating the teapot effect (submitted)

hydrophilic vs super hydrophobic teapot

- Making a splash with water repellency :

Nature Physics (2007)

"plop" ... or "splash" (movies)

- Dynamics of transient cavities : JFM (2007)

Soft glassy flows

- Nanofluidics, from bulk to interfaces:

Chem. Soc. Reviews (2010), invited review

- Boosting migration of large particles by solute contrasts : Nature Materials (2008)

- chemotaxic driving and "salt pumps": Phys. Rev. Lett. (2008)

- Nanofluidics (exp): slippage enhancement of the Zeta potential Phys. Rev. Lett. (2008)

Physics of everyday life

- Large slippage of water on super-hydrophobic carbon nanotube forests :

Phys. Rev. Lett. (2006)

- Scaling laws for slippage on super-hydrophobic surfaces : Physics of Fluids (2007)

- Molecular Dynamics simulations of flows at super- hydrophobic surfaces :

Nature Materials (2003)

Water Dynamics, slippage and ion specificity at hydrophobic surfaces

- Electrohydraulic power conversion in nanochannels

Phys. Rev. Lett. (2009) , synopsis in APS-Physics

- Water slippage: a quasi universal dependence on contact angle: Phys. Rev. Lett. (2008)

- Measuring slippage using thermal motion:

Phys. Rev. Lett. (2006)

- Ion specificity and anomalous electrokinetic effects at hydrophobic interfaces :

Phys. Rev. Lett. (2007)

- Flow boundary conditions, from macro to micro scales (review): Soft Matter (2007)

- A kinetic theory of soft glassy flows:

Phys. Rev. Lett. (2009)

- Flow cooperativity in soft glassy flows: Nature (2008)

- Dynamical heterogeneities in sheared soft glassy materials: Phys. Rev. E (2005)

- Shear banding in a sheared model glass :

Phys. Rev. Lett. (2003)

- Stone-skipping : the story (Physics World)

Nature (2004)

JFM (2005)

- Cooking potato wedges :

American Journal of Physics (2007)

-- Ironing, a wrinkle i

Selected papers (by subjects)

(experimental and theoretical work)