This step-by-step guide helps HPC users install and test IBM CPLEX using Conda and the Miniconda3 module, with a custom environment path.
HPC account access
A writable home directory (e.g., /home/case_id/)
Access to Miniconda3/22.11.1-1 via module load
Load Conda from your HPC environment modules:
module load Miniconda3/22.11.1-1
Use a custom path with --prefix to install CPLEX and Python 3.10:
conda create --prefix=/home/case_id/cplex python=3.10 cplex -c ibmdecisionoptimization
✅ This installs:
Python 3.10
IBM CPLEX
From the official IBM Decision Optimization channel
Because we used a full path, use source activate:
source activate /home/case_id/cplex
Run the Python interpreter:
python
Then inside Python:
import cplex
print(cplex.__version__)
If no error appears and a version is printed, you're good to go ✅
Paste this code in Python to test CPLEX functionality:
from cplex import Cplex
model = Cplex()
model.set_problem_type(Cplex.problem_type.LP)
model.set_objective_sense(model.objective.sense.maximize)
model.variables.add(names=["x1", "x2"], obj=[1.0, 2.0])
model.linear_constraints.add(
lin_expr=[[["x1", "x2"], [1.0, 1.0]], [["x1"], [1.0]]],
senses=["L", "L"],
rhs=[1.0, 0.5]
)
model.solve()
print("Status:", model.solution.get_status_string())
print("Objective value:", model.solution.get_objective_value())
print("x1 =", model.solution.get_values("x1"))
print("x2 =", model.solution.get_values("x2"))
To work with CPLEX via a higher-level modeling interface:
conda install -c conda-forge docplex
Then test it in Python:
from docplex.mp.model import Model