How can this research on the spacing effect be applied in the classroom? Here are a few ways to think about applications:
1) Identify key facts and ideas for distributed study: Think about the key sets of facts and ideas that you most want your students to remember twenty years from now—and next year. In an American history class, that set of ideas might include the key principles that the Founders intended to capture in the Constitution and the Bill of Rights. In elementary science, one such idea could be how electricity works. In first-grade math it could be addition and subtraction facts. Once you’ve identified this core content, you can use the next five strategies to engage students in studying this material on a number of occasions over several weeks or even months.
2) Design homework assignments that distribute practice: In developing homework assignments, strongly consider including material that was taught in previous weeks and even months. For example, at the end of a given unit, consider assigning homework that includes questions related to the previous several units (and even units going back to the beginning of the year).
3) Discourage cramming for tests: Carefully consider how to elicit student practice of test material several times before it appears on the test (for example, it might appear in a homework assignment; be elicited as part of a class discussion; and get quizzed in a quick class "bee"). When test time arrives, students have already distributed their learning a bit; the test becomes one more in a series of practice opportunities. In addition, make it a routine to include a number of items from previous units on each test—particularly material that many students did not do well on the first time around. This way students will know that they need to keep working on material that they find challenging—and that they won’t be able to get away with just cramming on the current material.
4) Take advantage of "down time" for practice: Especially in elementary school, when children are lining up for recess or lunch or during other transitions, run down the line asking each student a question related to material that has been introduced and practiced in previous lessons.
5) Break big ideas down into small pieces that can be easily practiced: After introducing a topic and covering enough content for students to understand the key ideas, break those key ideas and their associated facts or skills into small pieces that can be practiced in a variety of ways like class discussions, short quizzes, homework assignments, and class games.
6) Let students in on the secret: By all means, explain to your students that an important part of learning is remembering—and that they’re more likely to remember material if they revisit it a number of times. In fact, students may find that they can spend less total time studying for tests if they distribute their time over several sessions.
How can you not believe that that people learn differently? Isn’t it obvious?
People do learn differently, but I think it is very important to say exactly how they learn differently, and focus our attention on those differences that really matter. If learning styles were obviously right it would be easy to observe evidence for them in experiments. Yet there is no supporting evidence. There are differences among kids that both seem obvious to us and for which evidence is easily obtained in experiments, e.g., that people differ in their interests, that students vary in how much they think of schoolwork as part of their identity (“I’m the kind of kid who works hard in school”) and that kids differ in what they already know at the start of a lesson. All three of these have sizable, easily observed effects on learning. I think that often when people believe that they observe obvious evidence for learning styles, they are mistaking it for ability.
That sounds like an unimportant difference in semantics. What does it matter?
The idea that people differ in ability is not controversial—everyone agrees with that. Some people are good at dealing with space, some people have a good ear for music, etc. So the idea of “style” really ought to mean something different. If it just means ability, there’s not much point in adding the new term. (Some of the other style distinctions could be matters of ability too: some people might be good at keeping track of details, whereas others are good at grasping the big picture. I don’t know if they’ve been studied that way.)
All right then, what do you think is the difference between style and ability?
Ability is that you can do something. Style is how you do it. Thus, one would always be happy to have more ability, but different styles should be equally desirable. I find a sports analogy useful here. Two basketball players may be of equal ability, but have different styles on the court, one being a risk-taker, and the other quite conservative in his play. (Sometimes people say it’s obvious that there are learning styles because blind and deaf people learn differently. This is a difference in ability, not style.)
So what would good evidence for styles look like? What would it take for you to accept that there are learning styles?