Mathematical Physics 2023/24

Laurea magistrale in Fisica, I year, II semester,  6 CFU (60  hours

Teachers: Alessandro Teta and Guido Cavallaro


NOTICE:

The course will start on February 28, 2024, with the following time-table:

Wednesday   2.00 p.m. - 4.00 p.m.      in aula Conversi

Thursday        8.00 a.m. - 10.00 a.m.    in aula Conversi


Syllabus

Dynamical systems: basic elements on ordinary differential equations, Liouville transport theorem, equilibrium and stability, Lyapunov theorem.

Hamiltonian systems: basic elements on Hamilton's equations, action-angle variables, first order canonical perturbation theory.

Continuous systems: Euler equation; Navier-Stokes equation; examples and applications.


LIST OF EXERCISES


Detailed program   (notice: w.p. means without proof)

1. Ordinary differential equations

Existence and uniqueness theorem (w.p.), Gronwall lemma, continuity w.r. to initial conditions.

Equilibrium position, stable and asymptotically stable equilibrium position, Lyapunov theorem, stability and instability recognized from the linearized system (w.p.), examples and applications.

[HS] ch. 8, 9,  [C] 

(see also [E] ch. 2  and  sect. 10.5, or [B] ch. 2).


2. Hamiltonian systems

Derivation of Hamilton's equations, variational principle, constant of motions, Poisson brackets.

Definition of canonical and completely canonical transformations, examples.

Criterion via Poisson brackets, extended phase space, sufficient condition via differential form, generating functions, examples.

Hamilton-Jacobi equation for the time-dependent and time-independent case, separation of variables, action-angle variables.

Liouville theorem (local integrability)

Arnold theorem (w.p.).

First order perturbation theory.

Applications: action-angle variables for the planar Kepler problem, restricted planar three body problem, precession of the perihelion of Mercury.

The classical limit of Quantum Mechanics.

[T] sect. 6.1, 6.2, 6.4, 6.5, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12  and  [T1] Appendix A. 

(See also [T1] sect. 1.1,...,1.5;  [FM] sect. 11.4, 11.5;   [E] ch. 12 and 13, sect. 14.1, 14.2;   [Ce] ch. 7, sections MC1,...,MC5).


3.  Fluid Mechanics


Euler’s Equations. Conservation of mass; Balance of Momentum; Conservation of energy; Transport Theorem; Incompressible flows; Isentropic fluids; Bernoulli’s Theorem; Example: Euler flow in a channel; Rotation and Vorticity; Kelvin’s Circulation Theorem; Evolution equation for the vorticity; Stream lines and Stream function; Example: Stream function with radial symmetry.  [CM] chapter 1.

Navier-Stokes Equations. Stress tensor; Cauchy’s Theorem; Navier-Stokes Equations in dimensionless variables; Reynolds number; Helmholtz–Hodge Decomposition Theorem; Stokes Equations; Dissipation of kinetic energy; Example: flow in a channel (Poiseuille flow).  [CM] chapter 1.

Variational principle for Euler Equations ([MP], page 5); Examples: Couette flow, gravity waves [N].

Potential Flow. Complex velocity and complex potential; Blausius Theorem; Kutta–Joukowski Theorem; Examples, flow around a disk, potential vortex; D’Alembert’s Paradox in Three Dimensions (see also [MP] page 52); Point vortex Hamiltonian system (see also [MP] chapter 4); Rigorous derivation of the point vortex system ([MP], page 157, and [N]); Boundary layer; Prandtl equations.  [CM] chapter 2.


Stability of stationary solutions. Liapunov function; Arnold stability theorem. [MP] chapter 3 (pages 102-110).


References

[C]  E. Caglioti, Lecture Notes at    https://sites.google.com/site/ecaglioti/didattica/MR

[T] Teta, A.,  Notes on Hamiltonian Mechanics (16/4/2024)

[E] R. Esposito, Appunti dalle lezioni di Meccanica Razionale, ed. Aracne

[T1] Teta, A Mathematical Primer on Quantum Mechanics, Springer 2018

[H-S] M. Hirsch and S Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press 1974

[FM] A. Fasano and S. Marmi, Analytical Mechanics, Oxford Univ. Press 2006

[H] K. Huang: Statistical Mechanics, Wiley, 1991

[CM] A. Chorin, J.E. Marsden: A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 2000.

[BCM] P. Buttà, G. Cavallaro, C. Marchioro: Mathematical Models of Viscous Friction, Lecture Notes in Mathematics (Springer), 2015.

[Ce]   A. Celletti, Esercizi e complementi di meccanica razionale, ed. Aracne

[CM] A. Chorin, J.E. Marsden: A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 2000.

[MP] C. Marchioro, M. Pulvirenti: Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag, 1994.

[N] notes available on elearning.




The exam consists of an interview on the most relevant topics presented in the course. 


DATES OF THE EXAMS


EXAM RESERVATION DATE START                        EXAM RESERVATION DATE END                          EXAM DATE


27/12/2023                                                                  10/01/2024                                                                15/01/2024

    

03/06/2024                                                                   20/06/2024                                                                24/06/2024


27/06/2024                                                                   11/07/2024                                                                16/07/2024


26/08/2024                                                                    06/09/2024                                                               12/09/2024


01/11/2024                                                                    17/11/2024                                                                21/11/2024


27/12/2024                                                                    10/01/2025                                                               15/01/2025


For further information on the course see:        https://corsidilaurea.uniroma1.it/it/corso/2023/32384/programmazione