Механізм утворення стаціонарних станів. Морфогінез
Відомо, що вся інформація, на основі якої будується складний багатоклітинний організм, міститься в геномі кожної клітини цього організму. Впливаючи на певні гени, які відповідальні за ті чи інші ознаки, можна замінити, наприклад, колір очей, розмальовку крил комах або навіть кількість пальців на руках. Проте сучасна генетика та молекулярна біологія свідчать, що безпосередньої інформації про форму та структуру організму геном не містить. Ця інформація генерується за певними законами в процесі розвитку організму. Математичне моделювання відіграє особливу роль у з'ясуванні цих законів, оскільки дозволяє перевіряти гіпотези про елементарні взаємодії, які покладені в основу законів самоорганізації.
У зебри чорно-білі смуги на шкірі?
Ви бачите маленьку зебру, у якої немає чорно-білих смуг. Але з часом вони з’являться.
Як це відбувається?
Як саме це відбувається? У кожному випадку є свої особливості?
Дещо відомо, а дещо поки ні. Але загальний механізм неоднорідного поширення речовини, як в живому, так і не в живому, пояснює механізм Тюрінга.
Патерн Тюрінга – це концепція, введена англійським математиком Аланом Тюрінгом у статті 1952 року під назвою «Хімічні основи морфогенезу». Вона описує, як у природі такі візерунки, як смуги та плями, можуть виникати природно й автономно з однорідного стану.
Неоднорідність розподілу речовин у моделі Тюрінга виникає через взаємодію між дифузією хімічних частинок і хімічною реакцією.
Тюрінг досліджував поведінку системи, в якій дві дифузійні речовини взаємодіють одна з одною, і виявив, що така система здатна генерувати просторово періодичний візерунок із випадкових майже однакових початкових умов. Хвилеподібні структури, що виникають, є хімічною основою морфогенезу. Патерни Тюрінга часто зустрічаються в поєднанні з іншими патернами: розвиток кінцівок хребетних є одним із багатьох фенотипів, що демонструють патерни Тюрінга, що перекриваються додатковими патернами.
Тюрінг запропонував модель, у якій дві однорідно розподілені речовини (P і S) взаємодіють, створюючи стабільні розподілення під час морфогенезу. Речовина P сприяє утворенню більшої кількості речовини P, а також речовини S. Однак речовина S пригнічує утворення речовини P. Якщо S дифундує швидше, ніж P, то будуть створюватися різкі хвилі концентрації.
Розмальовка шкіри тварини, наприклад, зебри або леопарда, визначається розподілами хімічних речовин, які закладаються на стадії ембріогенезу протягом перших тижнів розвитку зародка. При цьому генетично детерміновані клітини – меланобласти – мігрують до поверхні ембріона і перетворюються на спеціалізовані пігментні клітини – меланоцити, які розташовуються в базальних шарах епідермісу. Забарвлення волосяного покриву визначається меланоцитами, що приносять у волосяні фолікули меланін, який потім надходить у волосся і визначає їх колір. Незалежно від біохімічних та клітинних деталей процесу, для моделювання важливо, щоб характерний розмір колірних неоднорідностей був значно більше розміру однієї клітини. Наприклад, відомо, що розмір патерну ембріона, що відповідає майбутній плямі на шкурі леопарда, становить близько 0.5 мм у діаметрі, що становить близько l00 клітин.
Мюрреєм зроблено величезний аналіз моделей, що побудовані за подібним принципом [3]. Моделі тюрінгівського типу, описують хімічну взаємодію двох речовин (морфогенів), здатних до дифузії, причому коефіцієнти дифузії сильно відрізняються. Передбачається, що розподіл морфогенів забезпечує «Позиційну інформацію», необхідну для протікання процесів морфогенезу. Зокрема, концентрація морфогенів визначає колір, в який буде пофарбована шкіра тварини.
Також було продемонстровано, що моделі, подібні до Тьюринга, виникають в організмах, що розвиваються, без класичної потреби дифузійних морфогенів. Дослідження ембріонального розвитку курчат і мишей свідчать про те, що патерни пір’я та волосяних фолікулів генеруються шляхом самоагрегації мезенхімальних клітин під шкірою. У цих випадках однорідна популяція клітин може утворювати агрегати з регулярним малюнком, які залежать від механічних властивостей самих клітин і жорсткості навколишнього позаклітинного середовища. Регулярні моделі клітинних агрегатів такого типу спочатку були запропоновані в теоретичній моделі, сформульованій Джорджем Остером, який постулював, що зміни в клітинній рухливості та жорсткості можуть привести до різних самовиникаючих моделей з однорідного поля клітин. Цей спосіб формування шаблонів може діяти в тандемі з класичними реакційно-дифузійними системами або незалежно. Як і в біологічних організмах, моделі Тюрінга зустрічаються в інших природних системах, наприклад, візерунки вітру, що утворюються в піску, хвилі речовини в кристалах та в галактичному диску. Модель Тюрінга дає відповідь на фундаментальне питання морфогенезу: як просторова інформація генерується в організмах?
Модель Тюрінга схематизовано для біології під назвою «local autoactivation-lateral inhibition" (LALI)». (LALI) Meinhardt and Gierer. Системи LALI, хоча формально подібні до реакційно-дифузійних систем, але більш придатні для біологічних застосувань, оскільки вони включають випадки, коли терміни активатора та інгібіторах опосередковуються клітинними «реакторами», а не простими хімічними реакціями та дифузією. Додатково включені інші механізми переносу, які спостерігаються в живих об’єктах. Прикладом такого розгляду є моделі формування кінцівок і розвитку зубів.
Реакційно-дифузійні моделі можуть бути використані для прогнозування точного розташування горбків зубів у мишей і полівок на основі відмінностей у моделях експресії генів. Модель може бути використана для пояснення відмінностей в експресії генів між зубами мишей і полівок. Невелике збільшення швидкості дифузії BMP4 і сильніша константа зв’язування його інгібітора є достатніми, щоб змінити модель росту зубів полівки на мишачу.
Розглянемо на прикладі реакції Грея – Скота (Gray-Scott system) механізм Тюрінга утворення патернів та нерівномірного розподілення речовини з початкового хаосу.
Система Грея – Скотта є реакційно-дифузійною системою. Це означає, що вона моделює процес, який складається з реакції та дифузії. У випадку моделі Грея – Скотта ця реакція є хімічною реакцією між двома речовинами A і B , обидві з яких дифундують з часом. Під час реакції A витрачається, а B утворюється. Густини речовин
представлені в симуляції.
Система характеризується двома параметрами:
F - це швидкість, з якою поповнюється A;
k - контролює швидкість, з якою B видаляється із системи.
Зміна цих параметрів приводить до широкого спектру цікавих візерунків, деякі з яких виглядають досить знайомими.
Система Грея-Скотта моделює хімічну реакцію A+2B->3B.
Ця реакція споживає і виробляє. Тому кількість обох речовин потрібно контролювати, щоб підтримувати реакцію. Це робиться шляхом додавання на «швидкості подачі» та видалення на «швидкості знищення». Видалення також можна описати іншою хімічною реакцією: B->P.
Оскільки є інертним продуктом, то він не реагує і, отже, не сприяє нашим спостереженням. У цьому випадку параметр k контролює швидкість другої реакції.
Обидві речовини з часом дифундують зі швидкістю дифузії (коефіцієнтів дифузії). Формування візерунків також залежить від цих коефіцієнтів дифузії.
У симуляції вважається, що швидкості та коефіцієнти дифузії не залежать від координати й часу.
Система диференціальних рівнянь, які моделюють описану хімічну реакцію, наступна:
ab²– описує реакцію між двома речовинами. Оскільки одиниця A реагує з двома B, відповідний член включає в добуток a і b² : ab². Оскільки реакція поглинає A, член має від’ємний знак у першому рівнянні. У другому рівнянні він має додатний знак, оскільки B утворюється в реакції.
Швидкість зміни концентрації речовини A зменшується внаслідок того, що збільшується концентрація реагентів, а швидкість зміни концентрації речовини B, відповідно, збільшується на таку саму величину.
Другий член першого рівняння описує швидкість, з якою відбувається поповнення A ззовні. Це необхідно, інакше A просто буде використано та реакція зупиниться. Швидкість подачі A задається параметром F. F множиться на (1 - a), щоб забезпечити поповнення A зі швидкістю, яка залежить від поточної концентрації, яка ніколи не перевищує 1.
B не потребує поповнення, оскільки він утворюється в результаті реакції. Натомість його потрібно видалити, щоб підтримувати реакцію. Швидкість видалення, «kill rate», контролюється параметром k. Щоб видалити B швидше, ніж додається A, сума k і F множиться на b, оскільки передбачається, що видалення B також залежить від його концентрації.
Останній член в обох рівняннях описує дифузію A і B відповідно.
У нашої симуляції Dₐ = 0,082, Dₐ = 0,041.
У більшості з можливих комбінацій значень k і F призводять до досить нудних результатів – однорідного розподілення концентрації. Тільки при визначених інтервалах значень параметрів утворюються стаціонарні стани з візерунками.
На малюнку показано розподіл концентрації речовини і в одномірному випадку. З нього можна бачити, що з первісного хаотичного розподілення концентрації речовин утворився з часом упорядкований стаціонарний стан. Концентрації речовин змінюються з координатою за гармонічним законом в противофазі.
1D: F=0,06, k=0,035
Результати моделювання для дво- і тримірного випадку аналогічні однмірному. Утворюються стійкі гармонічні коливання концентрації речовин.
2D: F=0,064, k=0,035.
Якщо задати поверхню, яка відповідає живим істотам, то можна отримати при симуляції розмальовки моделей біологічних об’єктів. На малюнку 6 можна побачити результат моделювання подібного до малюнка на площині, тільки зробленого на поверхні моделі кролика.
Кролик: F=0,060, k=0,035
У залежності від значення параметра – швидкості, з якою поповнюється речовина, виникають різні візерунки розмальовки моделі лева.
Лев: F=0,056, k=0,035.
Лев: F=0,060, k=0,035.
Лев: F=0,064, k=0,035.
Як видно, механізм утворення візерунків діє, але потребує уточнення для більш реалістичної картини. Прикладом більш реалістичної моделі утворення візерунків є модель візерунків зебри, запропонованої Meinhardt Hans у 1982 Models of Biological Pattern Formation та впровадженої Greg Turk у 1991 році.
Для симуляції патерну зебри використовується система з 5 речовин.
Для побудови моделей використана: https://github.com/GollyGang/ready
Механізм Тюрінга працює не тільки з окремими істотами. Він може бути застосований для симуляції утворення ландшафтів. Наприклад, при пожежах або при внутрішньовидовій і міжвидовій конкуренції.
Таким чином, геном не містить безпосередньої інформації про форму та структуру організму.
Ця інформація генерується за певними законами в процесі розвитку організму. Концепція морфогінеза, яка була введена Аланом Тюрінгом, цілком здатна пояснити появу візерунків, які виникають у природі, таких, як смуги та плями.
Вони можуть виникати природно й автономно з однорідного стану.
Неоднорідність розподілу речовин у моделі Тюрінга виникає через взаємодію між дифузією хімічних частинок і хімічною реакцією.