Nota: la pagina è ancora in costruzione. Il materiale allegato può presentare errori o imprecisioni e va pertanto considerato come provvisorio
Gli insiemi numerici
Gli insiemi numerici fondamentali e relative operazioni. Numeri naturali (link 1), proprietà delle potenze (link 2), numeri interi (link 3), numeri razionali (link 4)
Proporzioni e percentuali. Per accedere, cliccare qui.
I numeri radicali. Per accedere, cliccare qui.
Il calcolo letterale
I monomi e i polinomi. Per accedere, cliccare qui.
Introduzione alla scomposizione in fattori. Per accedere, cliccare qui.
Le frazioni algebriche. Per accedere, cliccare qui.
Le equazioni e i sistemi di equazioni
Le equazioni di primo grado. Il file contiene un'introduzione generale alle equazioni, la trattazione delle equazioni di primo grado numeriche, fratte, con scomposizioni in fattori e letterali, problemi di varia natura con le equazioni di primo grado. Per accedere, cliccare qui.
Approfondimento sulle equazioni fratte. Risoluzione equazioni fratte, problemi con le equazioni fratte, equazioni letterali, formule inverse. Per accedere, cliccare qui.
I sistemi lineari. Per accedere, cliccare qui.
Le equazioni di secondo grado: equazioni di secondo grado incomplete e complete, problemi parametrici sulle equazioni di secondo grado. Per accedere, cliccare qui.
Complementi sulle equazioni di secondo grado: equazioni fratte di secondo grado, equazioni di grado superiore al secondo. Per accedere, cliccare qui.
I sistemi di secondo grado: da scrivere.
Raccolta di problemi con le equazioni algebriche: da scrivere.
Le disequazioni
Le disequazioni di primo grado. Per accedere, cliccare qui.
Le disequazioni con scomposizione in fattori di primo grado e le disequazioni fratte. Per accedere, cliccare qui.
Le disequazioni di secondo grado. Per accedere, cliccare qui.
Le disequazioni binomie e trinomie. Per accedere, cliccare qui.
Le disequazioni algebriche: dispensa unica che raccoglie in un unico file le diverse tipologie di disequazioni trattate separatamente nei precedenti quattro link. Per accedere, cliccare qui.
I sistemi di disequazioni ad un'incognita. Per accedere, cliccare qui.
Problemi con le disequazioni: in allestimento
Le disequazioni con valori assoluti. Per accedere, cliccare qui.
Le equazioni irrazionali: in allestimento
La geometria analitica
Introduzione alla geometria analitica: concetti introduttivi, formula della distanza di un segmento, punto medio di un segmento. Per accedere, clicca qui.
La retta. Per accedere, clicca qui.
Applicazioni della retta in ambito economico e programmazione lineare: da scrivere
La circonferenza. Per accedere, cliccare qui.
La parabola. Equazioni e tracciatura (link 1), problemi generali sulla parabola (link 2), la parabola applicata a problemi tecnici (link 3).
Le coniche: Equazione generale di una conica. Classificazione: parabole, ellissi, circonferenze e iperboli. Problemi parametrici sulle coniche. Tracciatura di funzioni irrazionali riconducibili a tratti di conica. Per accedere, cliccare qui.
La goniometria e la trigonometria
Introduzione alle funzioni goniometriche. Per accedere, clicca qui.
Equazioni goniometriche. Per accedere, clicca qui.
Applicazione ai problemi sui triangoli. . Per accedere, clicca qui.
I numeri complessi
Introduzione ai numeri complessi. Per accedere, clicca qui.
Equazioni esponenziali e logaritmi
Le funzioni e le equazioni esponenziali: in allestimento
Le funzioni e le equazioni logaritmiche: da scrivere
Applicazione di modelli esponenziali a problemi reali: da scrivere
Lo studio di funzione
Introduzione alle studio di funzione. Per accedere, clicca qui.
Studio del dominio, del segno e delle intersezione con gli assi di una funzione. Dominio ed esercizi di applicazione (link 1), studio combinato di dominio, segno e intersezione con gli assi (link 2).
I limiti nello studio di funzione. Limiti ad infinito (link 1), limiti nei punti di discontinuità (link 2), definizioni rigorose di limite (parte teorica ed esercizi).
Le derivate e lo studio dei punti stazionari. Definizione di derivata e significato geometrico. L'algebra della derivate. La derivata della funzione composta. Applicazione della derivata al calcolo e alla classificazione dei punti critici di una funzione. La derivata come strumento per la fisica. Problemi di ottimizzazione. Per accedere, cliccare qui.
I flessi: da scrivere
Esercizi sullo studio completo di funzione: esercizi sulla tracciatura del grafico di funzione con studio del dominio, del segno, delle intersezione con gli assi, i limiti ad infinito e nei punti di discontinuità, i punti critici e i punti di flesso. Per accedere, cliccare qui.
Le funzioni in ambito applicativo: da scrivere
Gli integrali
Integrali indefiniti: primitive e integrali indefiniti, integrali immediati, il metodo del cambio di variabile, il metodo dell'integrazione per parti, integrali di funzioni razionali fratte, problemi sugli integrali indefiniti. Per accedere, cliccare qui.
Integrali definiti. Definizione di integrale definito, teorema fondamentale del calcolo integrale e applicazione al calcolo di aree di figure curvilinee. Integrali impropri. Volumi di solidi di rotazione. Per accedere, cliccare qui.
Applicazione degli integrali alla fisica. Applicazioni dello strumento integrale a vari contesti della fisica. Per accedere, cliccare qui.
Le equazioni differenziali
Le equazioni differenziali e le sue applicazioni. Analisi e risoluzione di alcune tipologie di equazioni differenziali del primo e del secondo ordine. Applicazione del modello delle equazioni differenziali nello studio di alcuni rilevanti fenomeni naturali, tecnici e sociologici. Per accedere, cliccare qui.
Il calcolo combinatorio e la probabilità
Il calcolo combinatorio. La dispensa - dopo aver introdotto i principali strumenti del calcolo combinatorio -- svolge un'analisi dettagliata di alcuni giochi popolari (lotto, poker, etc.). Per accedere, cliccare qui.
Introduzione alla probabilità: in allestimento.
Le distribuzioni di probabilità discrete e continue: da scrivere.
La matematica finanziaria
La capitalizzazione semplice e composta. Per accedere, cliccare qui.
Le rendite finanziarie: da scrivere.
La statistica
Introduzione alla statistica: in allestimento.