Post date: 06-may-2014 23:12:01
Lo que sigue es un ejercicio que sirve para poner a prueba nuestras supuestas “convicciones” y para “descalificar” nuestra intuición. Le propongo que se tome el trabajo de hacer una serie de verificaciones, algo realmente muy fácil, pero que requiere de un poco de tiempo. Por eso, le sugiero que lo tome con calma y, en todo caso, hágalo cuando tenga un rato libre. Se va a sorprender con los resultados… Acá va.
a) Elija un libro que tenga cerca. Cualquiera. Ábralo en cualquier página, y anote el número (de la página). Ahora, tome un libro diferente y elija una página al azar también. Anote el número de la página otra vez. Repita este procedimiento con muchos libros hasta que haya anotado el número de 100 páginas o más. (Le dije que tenía que dedicarle un rato, pero no me diga que es difícil. Seguro que es tedioso, sí, pero no es complicado de hacer.)
b) Entre en un negocio cualquiera. Anote los precios de 100 productos o más. No importa qué tipo de negocio. Si lo prefiere (y tiene acceso), vaya a cualquier página de Internet y anote los precios de diferentes productos que ofrezca. Pero tienen que ser 100 o más.
c) Obtenga ahora las direcciones de las personas que trabajan con usted, o compañeros de oficina o de clase. No importa. Además, consiga que le escriban las direcciones de gente que ellos conocen hasta que complete, otra vez, 100 o más de esos números. No hace falta que pongan los nombres, sólo los números de las direcciones.
d) Busque en Internet, o en cualquier enciclopedia, la población de 100 o más ciudades y/o pueblos del país en donde vive usted. Anótelos. Una vez que tenga esta lista de por lo menos 400 números (si es que hizo la tarea para el hogar que figura más arriba), sepárelos de la siguiente forma:
Anote en una columna todos los que empiezan con el dígito 1. Luego, en otra columna, los que empiezan con el 2. Después, otra columna más, con los que empiezan con el 3. Y así, hasta tener 9 columnas.
Todas empiezan con dígitos distintos, del 1 al 9. Antes de seguir, tengo algunas preguntas: ¿Usted cree que las columnas tendrán todas la misma cantidad de números? Es decir, ¿tendrán todas la misma longitud? ¿O le parece que habrá alguna que será más larga? Antes de contestar, deténgase un momento y piense lo que usted cree que debería pasar. ¿No tiene la tentación de decir que “da lo mismo”? Es decir, uno intuye que, como eligió todos esos números al azar, el primer dígito puede ser cualquiera, debería dar lo mismo. Las columnas deberían tener todas longitudes similares. Sin embargo, ¡no es así! Lo que sigue es la presentación en sociedad de una de las leyes más “antiintuitivas” que conozco. Se llama Ley de Benford. Los resultados (aproximados) que uno obtiene si hace los experimentos planteados más arriba, son los siguientes:
¿No es increíble que haya más de un 30% de posibilidades de que el dígito con el que empiece sea un número 1? ¿No parece mucho más razonable que para todos los dígitos sea 11,11% (que se obtiene de hacer 1/9)? No sólo eso. Luego, en escala descendente aparece el resto de los dígitos, tanto que al número 9 le corresponde menos de un 5% en el papel de líder. Un alerta: esta ley, sin embargo, no se aplica a fenómenos que son verdaderamente aleatorios. Es decir, no se puede usar en la Lotería, donde la probabilidad de que salga cualquier número es la misma. Por ejemplo, si usted pone nueve bolillas en un bolillero, numeradas del 1 al 9, saca una, anota, la pone nuevamente adentro, hace girar el bolillero, saca otra, anota otra vez, y sigue con el proceso, encontrará que los números aparecen igualmente distribuidos; la probabilidad de que aparezca cada uno es de 1/9. Lo que hace falta es que no sean números al azar. Es decir, la Ley de Benford se aplica para conjuntos grandes de números que no sean aleatorios.
Es decir que se usa esta ley cuando uno trabaja con conjuntos de muchos números, que obedezcan a la recolección de datos que provengan de la naturaleza (incluidos los factores sociales). Por ejemplo, si uno hiciera la lista de los montos de todas las facturas de luz que se pagan en Campeche, entonces sí, ahí vale la ley. Si uno hiciera un relevamiento de la cantidad de kilos de carne que entraron por día en el mercado de Liniers en los últimos diez años, también. Lo mismo que si uno tuviera los datos de las longitudes de todos los ríos de un determinado país. Si bien no lo escribí antes, ignoro el 0 como dígito inicial, porque uno –en general– no escribe un 0 a la izquierda. Cualquier número significativo empieza con algún dígito que no sea 0.
El que descubrió esto fue el doctor Frank Benford, un físico que trabajaba en la compañía General Electric. En 1938, cuando no había calculadoras ni computadoras, la mayoría de las personas que hacían cálculos usaba tablas de logaritmos. Benford observó que las páginas que contenían logaritmos que empezaban con “1” como dígito, ¡estaban mucho más usadas, sucias y ajadas que las otras! Así, empezó a sospechar que había algo particular detrás de esa observación, y lo fue a confrontar. De hecho, se dedicó a hacer el análisis de 20.229 conjuntos de números que involucraban categorías bien desconectadas entre sí:
a) volúmenes de agua de todos los ríos de una región;
b) estadísticas de béisbol de jugadores norteamericanos;
c) números que aparecían en todos los artículos de un ejemplar dado de la revista Reader’s Digest;
d) distancias entre todas las ciudades de un país;
e) direcciones de las primeras 342 personas que aparecían en la guía de American Men of Science (Hombres de Ciencia Norteamericanos);
f) número de pobladores de cada una de las ciudades de un país;
g) dólares a pagar por electricidad de los usuarios de una ciudad en particular.
Al comprobar que se repetía el patrón que había descubierto con las tablas de logaritmos, Benford se dio cuenta de que tenía en sus manos algo muy importante y muy antiintuitivo. Y se embarcó en hacer una demostración de lo que conjeturaba:
Benford demostró que la probabilidad de que apareciera el dígito n como primer número se podía calcular con la fórmula:
Lo increíble de esta ley, más allá de lo antiintuitiva, es que se usa –por ejemplo– para detectar a los evasores de impuestos. Un contador y matemático, el doctor Mark J. Nigrini, quien actualmente trabaja en Dallas, hizo la primera aplicación práctica de la Ley de Benford. La idea que usó es que, si alguien está tratando de falsificar datos, inexorablemente tendrá que inventar algunos números. Cuando lo haga, la tendencia es –por parte de la gente– usar muchos números que empiecen con 5, 6 o 7, y no tantos que empiecen con 1. Esto será suficiente para violar lo que predice la Ley de Benford y, por lo tanto, invita a que el gobierno haga una auditoría de esos números. La ley es claramente no infalible, pero sirve para detectar sospechosos. Lo curioso es que quienes usaron los primeros experimentos de Nigrini, aprovecharon para poner a prueba la declaración de impuestos de Bill Clinton. Nigrini concluyó que, si bien había más redondeos que los esperables, no parecía esconder ningún fraude al fisco.
Un último dato, no menor. La ley se aplica aun modificando las unidades de medida. Es decir, no importa que uno use kilómetros o millas, litros o galones, pesos, euros, dólares o libras esterlinas: la ley vale igual. Una manera interesante de convencerse de esto es la siguiente: supongamos que la distribución de los dígitos iniciales fuera uniforme, en el sentido de que todos los dígitos aparecerán en la misma cantidad. Ahora, imaginemos que uno tiene una lista con los importes de las cuentas de luz que pagaron todos los habitantes de una ciudad durante diez años. Supongamos que la moneda que usaban es la libra esterlina (sólo para fijar las ideas). Para hacer fáciles las cuentas, digamos que cada libra se cotiza a 2 dólares. Entonces, para convertir a dólares la lista que teníamos recién, habría que multiplicarla por 2. ¿Qué pasaría entonces? Que todos los números que empezaban con 1, al multiplicarlos por 2, tendrán ahora como primer dígito, o bien un 2 o bien un 3. Pero para todos aquellos que empezaban con un 5, 6, 7, 8 y 9, al multiplicarlos por 2, empezarán todos con un 1. ¿Qué dice esto? Sugiere que, si uno no cree en la ley, y supusiera que la distribución de los dígitos iniciales es uniforme, entonces, al convertirlo a cualquier moneda, tendría que conservarse ese patrón. Sin embargo, como acabamos de ver, el patrón uniforme no se mantiene. El patrón que se mantiene es uno con mayor abundancia del dígito inicial 1, seguido en abundancia por el dígito inicial 2, etc., de acuerdo con la Ley de Benford.
Es difícil aceptar esta ley sin rebelarse. Es muy antiintuitiva. Sin embargo, sígame con otra explicación porque permite intuir por qué el resultado puede ser cierto. Supongamos que uno empieza analizando la Bolsa Mexicana de Valores, por poner un ejemplo. No se asuste, no hay nada que saber sobre acciones ni bonos externos ni fondos de inversión. Es sólo una manera de mirar las cosas desde otro ángulo. Para fijar las ideas, supongamos que hubiera un crecimiento anual de la economía del 20%, y que el promedio de todo lo que se cotiza en la Bolsa fuera 1.000 (o sea, si promediara las cotizaciones de todas las acciones, obtendría el número 1.000). Como se ve, el número 1 es el primer dígito. Para cambiar este primer dígito y pasar al siguiente, al 2, y llegar a 2.000, tendrán que pasar 4 años (componiendo el interés anualmente). Luego, durante 4 años se mantiene el 1 como primer dígito. En cambio, si uno empezara con 5.000, o sea con el 5 como primer dígito, en sólo un año (como el incremento anual es del 20%) pasaría de 5.000 a 6.000, y con ello cambia del 5 al 6. Es decir: el 1 se mantuvo cuatro años mientras que el 5, sólo uno. Peor aún: si empezara con un 9 como primer dígito, o sea con un promedio de 9.000 en la misma Bolsa, en un poco más de medio año cambiará el primer dígito otra vez, porque llegaría a los 10.000. Con esto, lo que se ve es que el 1permanece mucho más tiempo como primer dígito que cualquier otro, y a medida que se acerca a 9, cada vez se sostiene menos tiempo. El 1 es el claro favorito. Creíble o no, la Ley de Benford tiene múltiples aplicaciones prácticas y sirve para exhibir, también, que nuestra intuición trastabilla cuando es puesta a prueba en situaciones no convencionales. Por eso, una vez más, la mejor manera de tomar decisiones en la vida es apoyarse en la ciencia (Paenza, MATEMÁTICA… ¿ESTÁS AHÍ? Episodio 3,14, 2007).