La paradoja de Monty-Hall.
El Problema de Monty Hall es un problema matemático de probabilidad que está inspirado por el concurso televisivo estadounidense Let's Make a Deal (Hagamos un trato). El nombre del problema tiene su origen en el nombre del presentador del concurso: Monty Hall.
El concursante en el concurso televisivo es requerido para elegir una puerta entre tres (todas cerradas), y su premio consiste en llevarse lo que se encuentra detrás de la puerta elegida. Se sabe cierto que una de ellas oculta un coche, y tras las otras dos hay una cabra. Una vez que el concursante ha elegido una puerta y le comunica al público y al presentador su elección, Monty (el presentador) abre una de las otras puertas y muestra que detrás de ella hay una cabra. En este momento se le da la opción al concursante de cambiar si lo desea de puerta (tiene dos opciones) ¿Debe el concursante mantener su elección original o escoger la otra puerta?
La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3. ¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?
Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad. Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra. En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.
Una forma más clara de verlo es replantear el problema. Si en lugar de haber sólo tres puertas hubiese 100, y tras la elección original el presentador abriese 98 de las restantes para mostrar que tras de ellas hay cabras, si no cambiase su elección ganaría el coche sólo si lo ha escogido originalmente (1 de cada 100 veces), mientras que si la cambia, ganaría si no lo ha escogido originalmente (y por tanto es lo que resta tras abrir las 98 puertas), ¡99 de cada 100 veces!.