Métodos de Runge-Kutta Los Runge-Kutta no es sólo un método sino una importante familia de métodos iterativos tanto implícitos como explícitos para aproximar las soluciones de ecuaciones diferenciales ordinarias (E.D.O´s), estas técnicas fueron desarrolladas alrededor de 1900 por los matematicos alemanes Carl David Tolmé Runge y Martin Wilhelm Kutta.
El clásico método Runge-Kutta de cuarto orden
Un miembro de la familia de los métodos Runge-Kutta es usado tan comúnmente que a menudo es referenciado como “RK4” o como “el método Runge-Kutta”.
Definamos un problema de valor inicial como:
Entonces el método RK4 para este problema esta dado por la siguiente ecuación:
Donde
Así, el siguiente valor (yn+1) es determinado por el presente valor (yn) mas el producto del tamaño del intervalo (h) por una pendiente estimada. La pendiente es un promedio ponderado de pendientes:
k1 es la pendiente al principio del intervalo;
k2 es la pendiente en el punto medio del intervalo, usando k1 para determinar el valor de y en el punto usando el método de Euler
k3 es otra vez la pendiente del punto medio, pero ahora usando k2 para determinar el valor de y
k4 es la pendiente al final del intervalo, con el valor de y determinado por k3
Promediando las cuatro pendientes, se le asigna mayor peso a las pendientes en el punto medio:
Esta forma del método de Runge-Kutta, es un método de cuarto orden lo cual significa que el error por paso es del orden de O(h5), mientras que el error total acumulado tiene el orden O(h4).