Mapa conceptual de la relación de entropía con la segunda ley de la termodinámica y la energía libre de Gibbs.
En termodinámica, la entropía (simbolizada como S) es una magnitud física para un sistema termodinámico en equilibrio. Mide el número de microestados compatibles con el macroestado de equilibrio, también se puede decir que mide el grado de organización del sistema, o que es la razón de un incremento entre energía interna frente a un incremento de temperatura del sistema termodinámico.
La entropía es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se da de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra «entropía» procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850;1 y Ludwig Boltzmann, quien encontró en 1877 la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.
Cuando se plantea la pregunta: «¿Por qué ocurren los sucesos en la naturaleza de una manera determinada y no de otra manera?», se busca una respuesta que indique cuál es el sentido de los sucesos. Por ejemplo, si se ponen en contacto dos trozos de metal con distinta temperatura, se anticipa que finalmente el trozo caliente se enfriará, y el trozo frío se calentará, finalizando en equilibrio térmico. El proceso inverso, el calentamiento del trozo caliente y el enfriamiento del trozo frío es muy improbable que se presente, a pesar de conservar la energía. El universo tiende a distribuir la energía uniformemente; es decir, a maximizar la entropía. Intuitivamente, la entropía es una magnitud física que, mediante cálculo, permite determinar la parte de la energía por unidad de temperatura que no puede utilizarse para producir trabajo.
La función termodinámica entropía es central para el segundo principio de la termodinámica. La entropía puede interpretarse como una medida de la distribución aleatoria de un sistema. Se dice que un sistema altamente distribuido al azar tiene alta entropía. Un sistema en una condición improbable tendrá una tendencia natural a reorganizarse a una condición más probable (similar a una distribución al azar), reorganización que dará como resultado un aumento de la entropía. La entropía alcanzará un máximo cuando el sistema se acerque al equilibrio, y entonces se alcanzará la configuración de mayor probabilidad.
Una magnitud es una función de estado, si y sólo si, su cambio de valor entre dos estados es independiente del proceso seguido para llegar de un estado a otro. Esa caracterización de función de estado es fundamental a la hora de definir la variación de entropía.
La variación de entropía nos muestra la variación del orden molecular ocurrido en una reacción química. Si el incremento de entropía es positivo, los productos presentan un mayor desorden molecular (mayor entropía) que los reactivos. En cambio, cuando el incremento es negativo, los productos son más ordenados. Hay una relación entre la entropía y la espontaneidad de una reacción química, que viene dada por la energía de Gibbs.
Magnitud termodinámica que mide la parte de la energía no utilizable para realizar trabajo y que se expresa como el cociente entre el calor cedido por un cuerpo y su temperatura absoluta.4
Dentro de la termodinámica o rama de la física que estudia los procesos que surgen a partir del intercambio de energías y de la puesta en movimiento de diferentes elementos naturales, la entropía figura como una especie de desorden de todo aquello que es sistematizado, es decir, como la referencia o la demostración de que cuando algo no es controlado puede transformarse y desordenarse. La entropía, además, supone que de ese caos o desorden existente en un sistema surja una situación de equilibrio u homogeneidad que, a pesar de ser diferente a la condición inicial, suponga que las partes se hallan ahora igualadas o equilibradas.
Esta idea de desorden termodinámico fue plasmada mediante una función ideada por Rudolf Clausius a partir de un proceso cíclico reversible. En todo proceso reversible la integral curvilínea de
solo depende de los estados inicial y final, con independencia del camino seguido (δQ es la cantidad de calor absorbida en el proceso en cuestión y T es la temperatura absoluta). Por tanto, ha de existir una función del estado del sistema, S=f(P,V,T), denominada entropía, cuya variación en un proceso reversible entre los estados 1 y 2 es:
.
Téngase en cuenta que, como el calor no es una función de estado, se usa δQ, en lugar de dQ. La entropía física, en su forma clásica, está definida por la ecuación siguiente:
o, más simplemente, cuando no se produce variación de temperatura (proceso isotérmico):