Energía

Reactores de fusión nuclear

Los reactores de fusión nuclear son proyectos experimentales, viables, que se hallan en proceso de diseño y realización. Se utilizarán para generación de energía a partir de la fusión termonuclear de iones confinados por campos magnéticos.

En 1854, Hermann von Helmholtz propuso que era la propia gravedad del Solla que permitía liberar gran cantidad de energía. Postulaba que si la materia de una estrella cae hacia su centro, la estrella se contraerá gradualmente, y en contrapartida emitirá radiación durante mucho tiempo.

Toda esa masa estelar, al contraerse y fusionarse bajo la presión extrema de la gravedad, hace que el hidrógeno se reconvierta en helio (He). En estas reacciones, aproximadamente 0,5% de la masa del hidrógeno se convierte en energía, de acuerdo con la famosa ecuación de Einstein E=mc2, que relaciona la masa y la energía. De este modo, las estrellas irradian energía en modalidad de luz y de calor.

Para emular al Sol y reproducir una fusión artificial a pequeña escala, en lugar de hidrógeno, como combustibles se utilizan deuterio (²H) y tritio (³H), según los criterios de Lawson, aunque en algunos proyectos, también se experimenta con Helio-3 (³He), dado que, para fusionarse, estos tres isótopos del hidrógeno y el helio, necesitan menor energía calorífica que la utilizada por las estrellas.

Índice

Proyectos y experimentación

Existen proyectos de mini-reactores de fusión compactos muy interesantes, que se espera sean viables a corto plazo. Como el High beta fusion reactor y el The Polywell Nuclear Reactor, que de ser factibles, harían realidad el sueño del ser humano, de contener la energía de las estrellas, dentro de una botella.

Hasta el momento, uno de los reactores de fusión que ha demostrado alguna eficiencia energética, fue en 1991 el Joint European Torus (JET). Logró un pico de 1,7 MW, el cual fue el mejor registro en el mundo hasta el 2004. En este mismo experimento se consiguió un valor de Q=~0,7 donde Q es el ratio entre la energía saliente y la energía entrante del reactor, es decir en este caso para producir los 16 MW de potencia se requirió 22,8 MW, lo cual como es lógico imposibilita por ahora su viabilidad (Una planta autosuficiente requiere mínimo un Q>1).

Los reactores experimentales en construcción, como el proyecto internacional (ITER), siglas de International Thermonuclear Experimental Reactor, guiarán la viabilidad de los distintos sistemas de generación de energía por fusión en nuestro planeta. Demostrará que científica y técnicamente el método de fusión es viable. Tendrá que ser capaz de generar 500 megavatios de energía durante cierto tiempo. El proyecto tendrá una función experimental para probar tecnologías imprescindibles con el fin de crear multitud de centrales de fusión industrial en todo el mundo. Se estima que para 2040 estará terminado todo el proyecto de investigación. El ITER producirá diez veces más que la energía requerida como combustible.

Los socios del proyecto ITER, liderados por la Unión Europea, son Estados Unidos, China, Rusia, Japón y Corea del Sur.

El Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) es el referente de investigación española en el campo de la fusión nuclear. En junio de 2005 los socios del proyecto ITER acordaron construirlo en Francia. Su coste de construcción será de unos 4700 millones de euros, con posibilidad de llegar el total de la financiación a 15 000 millones de euros.

El ITER entrará en funcionamiento aproximadamente el año 2025. Se espera que para mediados de siglo las nuevas generaciones puedan disfrutar de una energía que no embargue el futuro de la humanidad. 

Funcionamiento

Con el fin de entender algo mejor el fenómeno de fusión nuclear hay que adentrarse en la física atómica y tener en cuenta que el átomo se compone de un núcleo central formado por protones, que tienen carga eléctrica positiva, y neutrones, que son eléctricamente neutros. Orbitando alrededor del núcleo se encuentran los electrones, cargados negativamente.

La fuerza nuclear fuerte es la fuerza fundamental que mantiene unido el núcleo, los protones y los neutrones. Debido a su carga negativa, los electrones resultan atraídos hacia el núcleo por fuerzas eléctricas menos potentes que la fuerza nuclear fuerte.

Para que pueda ocurrir una reacción de fusión, dos átomos ligeros tienen que unir sus núcleos, cuyo resultado es un núcleo mayor. En este proceso se libera energía que proviene de la fuerza nuclear fuerte que unía el núcleo.

Con el fin de conseguir la fusión de dos átomos, hay que superar la fuerza de repulsión mutua que ejercen los protones de los dos núcleos. Sólo si ambos núcleos se acercan lo suficiente pueden superar la cresta de repulsión. Esto se consigue haciéndolos chocar a gran velocidad y elevando la temperatura del reactor entre 100 y 150 millones de grados.

A esas temperaturas los átomos se mueven a una velocidad tal que provocan la separación en núcleos y electrones libres, pues dejan de estar unidos por la fuerza eléctrica que los unía. Tal condición de la materia es el cuarto estado, superior al estado gaseoso. A este cuarto estado se le denomina «plasma».

Para conservar estas altas temperaturas, hay que evitar que el plasma choque contra las paredes del reactor. A fin de evitar estos choques se utilizan campos magnéticos. Con ayuda de estos campos las partículas del plasma siguen las líneas magnéticas, como si fuesen guiadas por un carril. Para evitar que las partículas choquen contra los extremos del reactor, científicos rusos inventaron el reactor «Tokamak».

Un tokamak (cámara toroidal) es un reactor de fusión de forma cilíndrica y anular (algo parecido a una rosquilla «(dona)» o a la cámara de goma de una rueda de automóvil): un tubo sin extremos rodeado exteriormente con unas bobinas que deben proporcionarle el campo magnético. Este tipo de reactor también recibe el nombre de «toro».

Dentro del tokamak la temperatura es muy alta: unos 150 millones de grados. Para que el reactor sea seguro necesita presión baja con el fin de que la densidad del plasma también lo sea. Tecnológicamente esto puede ser complicado, pero es indispensable para el buen funcionamiento del reactor.

En caso de accidente, en un reactor de fusión los combustibles (D y T) no generan reacción en cadena que pueda contaminar el ambiente como ocurre con la fisión nuclear. Si al reactor de fusión se le deja de suministrar combustible, cesa la reacción. Ello implica que este tipo de reacción, por fusión, sea limpio, seguro y ecológico.

En la fusión hay que fusionar al deuterio con un átomo de tritio, cuyo resultado de la reacción es un neutrón, un átomo de helio y mucho calor, como consecuencia de la destrucción de la fuerza nuclear fuerte de los núcleos de los átomos de deuterio y de tritio.

Fusionando litio (Li) se obtendrían tritio y helio (He). Las reservas de litio en el planeta son muy abundantes, por lo que se dispondría de T durante miles de años.

El deuterio se obtiene del hidrógeno del agua, por lo cual se convierte en una fuente casi inagotable de combustible. En un litro de agua hay 33 miligramos de deuterio. Si se le fusiona con tritio se obtiene energía comparable a 350 litros de gasolina.

En un reactor de fusión la presencia de tritio es un asunto de seguridad importante, porque es un gas radiactivo que en estado natural tarda doce años en volverse inocuo. Artificialmente se produce en el interior del reactor a partir de litio. Por ello no hay que transportar el material radiactivo. En una central en funcionamiento nunca se acumularía mucha cantidad de este elemento químico. Las paredes del reactor se vuelven radiactivas; esta radiactividad desaparece totalmente en unos cincuenta años.

Fusión: Deuterio + Tritio = Helio + neutrón + energía.

El Reactor de fusión experimental JET, del tipo tokamak, es el más grande del mundo en la actualidad.

Combustible

Aunque a día de hoy, no existen reactores de fusión que hayan operado durante períodos de tiempo relevantes, ni que hayan permitido aprovechar su energía, los principales combustibles que podrían utilizarse en estos reactores serían el tritio (³H) y el deuterio (²H), pudiendo usar también el helio tres (³He). Muchos otros elementos pueden fusionarse si se les fuerza a acercarse entre sí lo suficiente, para lo cual es necesario alcanzar temperaturas suficientemente altas. En general, se considera que habrá tres generaciones de combustibles de fusión dependiendo de la factibilidad técnica de poder lograr la fusión de distintos núcleos atómicos de elementos ligeros.

Combustible de fusión de primera generación:

El deuterio y el tritio son considerados la primera generación de combustibles de fusión; existen varias reacciones en las cuales pueden fusionarse juntos. Las tres reacciones más habituales son:

²H + ³H → n (14,07 MeV) + 4He (3,52 MeV)

²H + ²H → n (2,45 MeV) + ³He (0,82 MeV)

²H + ²H → p (3,02 MeV) + ³H (1,01 MeV)

Combustible de fusión de segunda generación:

La segunda generación de combustibles requiere o bien alcanzar temperaturas más altas de confinamiento para lograr la fusión o tiempos de confinamiento más prolongados, que los requeridos para los combustibles de primera generación. Este grupo está formado por deuterio y helio tres. Los productos de estos reactivos son todas partículas cargadas, pero existen reacciones laterales no beneficiosas que llevan a la activación radioactiva de los componentes del reactor de fusión.

²H + ³He → p (14,68 MeV) + 4He (3,67 MeV)

Combustible de fusión de tercera generación:

Hay varios combustibles de fusión potenciales en la tercera generación. La tercera generación de combustibles de fusión producen sólo partículas cargadas en el proceso de fusión y no hay reacciones laterales. Por lo tanto, no habría ninguna activación radioactiva en el reactor de fusión. A menudo esto es visto como el objetivo final de la investigación de la fusión. El ³He es el combustible de tercera generación que es más probable que se utilice primero ya que tiene la menor reactividad de Maxwell en comparación con otros combustibles de fusión de tercera generación.

³He + ³He → 2p + 4He (12,86 MeV)

Otra reacción de fusión aneutrónica podría ser la de protón-boro:

p + 11B → 34He

Según estimaciones razonables, las reacciones laterales serían de alrededor del 0,1% de la energía de fusión llevada a término por los neutrones. Con 123 keV, la temperatura óptima de esta reacción es cerca de diez veces más que para las reacciones de hidrógeno puro, el confinamiento de energía debiera ser 500 veces mejor que la requerida para la reacción D-T, y la densidad de energía seria 2.500 veces más baja que para D-T.

El plasma

Es el cuarto estado de la materia; es un gas ionizado, o sea que los núcleos están separados en dos tipos de partículas: iones (positivos) y electrones (negativos). De este modo el plasma es un estado parecido al gas, pero compuesto por electrones, cationes (iones de carga positiva) y neutrones, todos separados entre sí y libres. Por esta razón es un excelente conductor.

Confinamiento

Existen tres clases principales de confinamiento:

  • Confinamiento gravitatorio. Su creación es natural. Se basa en confinamiento de las partículas por creación del potente campo gravitatorio de las estrellas, fenómeno que actualmente no es posible imitar en la Tierra, por lo cual se investiga la factibilidad de otros campos.

  • Confinamiento magnético. Se basa en creación de campos magnéticos, con el objetivo de confinar y guiar el gas plasmático ionizado en el interior del reactor. Para conseguir un funcionamiento óptimo es esencial contener el plasma confinado, para que se mantenga unido y circule únicamente por senderos previamente delimitados, sin contacto alguno con las paredes del reactor, a fin de mantener una temperatura y una densidad plasmática óptimas para la fusión. Así se evitan:

  1. Contaminaciones del plasma

  2. Deterioro de la vasija

  3. Fugas de radiación

  4. Pérdidas de temperatura

  • Confinamiento inercial. Se basa en generación rápida de energía antes que el plasma pueda expandirse. El combustible a baja temperatura se calienta rápidamente desde la superficie, cuyo resultado es un plasma que se comprime hasta alcanzar densidades muy elevadas y temperaturas termonucleares. Esto se logra generando calentamiento del combustible mediante láseres, por lo cual se obtiene presión muy potente, que se aplica sobre un punto concreto del gas ionizado, que lo presiona y genera ignición y fusión del combustible, así como expansión y calor de la reacción nuclear. El momento del confinamiento en sí es el tiempo de inercia entre la presión máxima y la expansión.

Interior de un reactor de fusión Tokamak.

Proceso de implosión, comienzo de la fusión y de liberación de energía de una cápsula de combustible de fusión. 1. El rayo láser calienta rápidamente la superficie del objetivo o blanco, lo cual genera plasma alrededor. 2. El objetivo se comprime debido a expulsión del material que lo rodeaba en la superficie. 3. Se produce la implosión de la microcápsula, alcanza a obtener una densidad de 20 veces la del plomo y hace ignición a 100 000 000 °C. 4. La reacción termonuclear se distribuye por el combustible, provoca salida de varias veces la energía entrante, después genera un efecto parecido al de una supernova y el objetivo queda quemado.

El campo magnético

Este campo consta de sólo dos componentes: uno toroidal y otro poloidal.

Los fundamentos magnéticos del confinamiento plasmático son:

  • Campo magnético toroidal, generado por las bobinas equidistantes que hay alrededor del toroide.

  • Campo magnético poloidal, producido por una corriente eléctrica que fluye en el interior del plasma, inducida principalmente por el solenoide central.

  • Campo magnético helicoidal, resultante de la suma de los campos toroidal y poloidal. Tiene forma de muelle enrollado sobre sí mismo.

  • Electroimanes, que inducen corriente en el plasma.

Todo esto se hace posible gracias a Hendrik Antoon Lorentz, que demuestra como las cargas eléctricas que circulan en el interior de un campo magnético, experimentan una fuerza, llamada de Lorentz. La Ley de Lorentz explica, como una partícula cargada, que se mueve dentro de un campo magnético, expresa una fuerza que será perpendicular al vector del campo y al vector del desplazamiento, con lo que conseguiremos que la partícula circule siempre en el interior de dicho campo.

Campo toroidal

Está compuesto por bobinas. El giro tridimensional del eje central de la configuración se genera mediante dos bobinas centrales: una circular y otra helicoidal. La posición horizontal del plasma se controla mediante las bobinas de campo vertical.

Trampa magnética

Se obtiene por medio de varios conjuntos de bobinas (circular y helicoidal) que configuran totalmente las superficies magnéticas antes de generar el plasma.

La acción conjunta de estos campos magnéticos origina superficies magnéticas que guían las partículas del plasma para que no choquen contra las paredes de la cámara.

Inicio de la reacción

El plasma se calienta con microondas a la frecuencia ciclotrónica de los electrones e inserción de haces de átomos neutros de hidrógeno. También se experimenta con láseres para calentar el combustible e iniciar la reacción.

Tokamak

Para evitar que las partículas del plasma, choquen contra los extremos del reactor, científicos rusos inventaron el reactor «Tokamak».

Un Tokamak es un reactor de fusión, que tiene forma de cámara toroidal o cilindro anular toroide, algo parecido a una rosquilla sin extremos. Es un tubo hueco, rodeado exteriormente con unas bobinas que harán posible la trampa magnética. Este tipo de reactor también recibe el nombre de «toro». Por su interior circula el plasma confinado, a más de 150 millones de grados, guiado desde el exterior por un campo magnético, con la finalidad de que el plasma no toque las paredes del Tokamak, lo cual causaría pérdida de temperatura.

Si esta trampa magnética es lo suficientemente fuerte y sus guías magnetizadas forman confinamientos aislantes, los iones y electrones permanecerán atrapados en estas vías magnéticas hasta que colisionan con otras partículas y se produzca la fusión.

Dentro del tokamak la temperatura es muy alta: unos 150 millones de grados. Para que el reactor sea seguro necesita presión baja con el fin de que la densidad del plasma también lo sea. Tecnológicamente esto puede ser complicado, pero es indispensable para el buen funcionamiento del reactor.

El campo magnético de un Tokamak está compuesto por:

  • Solenoide central: superconductor que induce la corriente en el plasma.

  • Bobina toroidal: superconductora que confina y estabiliza el plasma. Está situada exteriormente en espiral alrededor del toroide.

  • Bobina poloidal: superconductora que confina y posiciona el plasma del toroide. Se ubica en la parte más exterior, longitudinalmente al toroide.

  • Cámara de vacío: mantiene en vacío el plasma. Es la primera barrera de confinamiento para el tritio. Se encuentra en el interior del toroide.

  • Transformadores: conducen la electricidad que abastece a las bobinas toroidales y poloidales.

Los componentes que ayudan a elevar la temperatura del plasma, hasta que alcance la temperatura crítica, son la inyección de haces o chorros de átomos neutros muy energéticos y las radiofrecuencias.

Los Tokamak tienen varias cryopomps (criobombas), que trabajan bajo un frío extremo para refrigerar los imanes de la trampa magnética, crear el vacío y así extraer mejor las cenizas del helio generado por la reacción de fusión de deuterio-tritio. Estas entran en funcionamiento después de que las bombas mecánicas hayan vaciado la mayor parte de las moléculas de aire y las impurezas de la cámara toroidal.

El plasma que circula en el interior del «torus» central está compuesto por 50% de deuterio y 50% de tritio, lo cual puede generar millones de watts,, que podrían abastecer miles de casas, pero también hay que tener en cuenta que todo el proceso, requiere mucha energía, para mantener el plasma circulando a tales temperaturas.

En caso de accidente en un reactor de fusión, los combustibles (D y T) no generan reacción en cadena que pueda contaminar el ambiente, como ocurre con la fisión nuclear. Si al reactor de fusión se le deja de suministrar combustible, cesa la reacción. Ello implica que este tipo de reacción, por fusión, sea limpio, seguro y ecológico.

El proyecto ITER demostrará que científica y técnicamente el método Tokamak de fusión es viable. Tendrá que ser capaz de generar 500 megavatios de energía durante cierto tiempo. El proyecto tendrá una función experimental para probar tecnologías imprescindibles con el fin de crear multitud de centrales de fusión industrial en todo el mundo. Se estima que para 2040 estará terminado todo el proyecto de investigación. El ITER producirá diez veces más que la energía requerida como combustible.

Los socios del proyecto ITER, liderados por la Unión Europea, son Estados Unidos, China, Rusia, Japón y Corea del Sur.

El Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) es el referente de investigación española en el campo de la fusión nuclear. En junio de 2005 los socios del proyecto ITER acordaron construirlo en Francia. Su coste de construcción será de unos 4 700 000 000 (cuatro mil setecientos millones) de euros, con posibilidad de llegar el total de la financiación a 15 000 000 000 (quince mil millones) de euros.

El ITER entrará en funcionamiento aproximadamente el año 2025. Se espera que para mediados de siglo las nuevas generaciones puedan disfrutar de una energía que no embargue el futuro de la humanidad.

Stellarator

Los Stellarators («estelaratores») son reactores de fusión toroidales con un campo magnético poloidal producido por bobinas exteriores al plasma. Su funcionamiento es continuo, pues no existe corriente plasmática inductiva alguna, ni implica riesgo de interrupciones, por no existir corriente interna en el plasma.

Existen tres tipos de estelaratores:

  • Torsatrones: tienen bobinas helicoidales continuas.

  • Modulares: de bobinas no planas.

  • Helíacos: conjunto de bobinas planas circulares, distribuidas a lo largo de una hélice enrollada alrededor de una bobina central circular.

Los resultados de los stellarators actuales han sido buenos, iguales a los obtenidos en tokamaks.

Ventajas y desventajas

El ser humano siempre ha soñado con alcanzar una fuente de energía inagotable, limpia y segura. Sin efectos nocivos para el medio ambiente y la salud. Que cubra todas las necesidades del planeta, sin embargar el futuro de las nuevas generaciones.

Estudiando el modelo de fusión termonuclear, que se produce de forma permanente en el interior del Sol, se están realizando proyectos ecológicos, seguros y viables, cuyas reservas del combustible utilizado, (deuterio y tritio) son prácticamente inagotables y pueden demostrar, además de alta generación de energía, los mejores estándares de seguridad y respeto del entorno.

Sucede lo contrario en la fisión nuclear, donde el uranio es un combustible altamente peligroso y escaso, ya que fuera de control genera una reacción en cadena, de efectos catastróficos. Se calcula que las reservas de uranio en el planeta se agotarán en unos cuantos decenios. En caso de accidente en un reactor de fusión, bastaría suspender el suministro de combustible, con lo cual deja de funcionar el reactor y pocos metros más allá de la vasija cesa la radiactividad, ya que el deuterio es inocuo y el tritio es un isótopo escasamente radiactivo (unas 10 000 veces menor que el uranio), que además se podría reciclar en el interior del reactor.

No obstante, la vasija del núcleo en un reactor de fusión, no es 100% limpia y segura, ya que la radiación y las extremas temperaturas a las que se encuentra sometido el plasma, producen contaminación y peligrosidad. Al no existir reacción en cadena, la radiación se concentra únicamente en la vasija y sus inmediaciones

A la espera de una fuente energética mejor, la fusión nuclear es una posible esperanza, que aspira a terminar con el uso inadecuado de los combustibles fósiles y la peligrosidad de la fisión nuclear.

Ver también

Cadena protón-protón

La cadena protón-protón es una de las dos reacciones defusión que se producen en las estrellas para convertir elhidrógeno en helio, el otro proceso conocido es el ciclo CNO. Las cadenas protón-protón son más importantes en estrellas del tamaño del Sol o menores. El balance global del proceso es el equivalente de unir cuatro nucleones y dos electrones para formar un núcleo de helio-4 (2 protones + 2 neutrones).

Para vencer la repulsión electromagnética entre dos núcleos de hidrógeno se requieren grandes cantidades de energía. A las temperaturas estelares de entre diez y veinte millones de kelvins, el tiempo medio de la reacción es de alrededor de 109años. Tiempo muy prolongado pero más que suficiente para sostener al Sol dada la ingente cantidad de hidrógeno contenido en el núcleo del Sol y las enormes cantidades de energía que, incluso ese bajo ritmo de reacciones, aporta. Ritmos de reacción demasiado veloces harían imposible la estabilidad hidrodinámica en las estrellas consumiéndolas en explosiones casi instantáneas tras su formación.

Por lo general, la fusión protón-protón ocurre solo si la temperatura ( i.e. energía cinética) de los protones es suficientemente alta como para que logren vencer las fuerzas coulombianas de repulsión mutua. La teoría de que los protones son el principio básico a partir del cual las estrellas generan su energía se remonta a los años 20 cuando Arthur Eddington realiza sus primeras mediciones. En esos años las temperaturas del Sol se consideraban demasiado bajas para que las partículas penetraran la barrera coulombiana. Con el desarrollo de la mecánica cuántica se descubrió el efecto túnel y las implicaciones que este tenía a la hora de facilitar la fusión a temperaturas teóricamente imposibles.

Reacciones de las cadenas pp

El primer paso conduce a la fusión de dos núcleos de hidrógeno ¹H (protones) a deuterio ²H, liberando un positrón y unneutrino al transformar un protón en un neutrón.

¹H + ¹H → ²H + e+ + νe + 0.42 MeV (τ ~ 7·109 años) <-- Tiempo limitante

los neutrinos liberados en esta reacción portan energías por debajo de los 0,42 MeV.

Este primer paso es muy lento porque depende de la interacción débil para convertir un protón en un neutrón. De hecho es el paso más lento de todas las cadenas pp por lo que recibe el nombre reacción limitante ya que es el que dicta el ritmo de toda la cadena protón-núcleo.

El positrón resultante de dicha reacción se aniquila inmediatamente con un electrón y su masa se convierte en energía liberada a través de dos fotones gamma.

e+ + e → 2γ + 1.02 MeV

Tras esta reacción el deuterio producido en el primer paso se puede fusionar con otro hidrógeno para producir un isótopo ligero de helio ³He:

²H + ¹H → ³He + γ + 5.49 MeV (τ ~ 1,4 segundos)

A partir de este punto la reacción se subdivide en tres ramas diferentes que desembocan todas en la generación de un núcleo 4He. En la pp1 el helio-4 se produce por la fusión de dos núcleos de helio-3; las otras dos ramas, pp2 y pp3 requieren del helio-4 previamente producido en la pp1, ambas cadenas surgen de los dos caminos que el berilio-7 puede tomar. En el Sol, la cadena pp1 se da con una frecuencia del 91%, la pp2 con el 9% y la pp3 es la más infrecuente con un 0.1% de ocurrencia.

La cadena pp I

³He +³He → 4He + ¹H + ¹H + 12.86 MeV (τ ~ 2,4·105 años)

La energía de la cadena de reacciones ppI al completo arroja un balance de 26,7 MeV netos. La cadena pp I es dominante a temperaturas de 10 a 14 megakelvins (MK). Por debajo de 10 MK, la cadena PP1 no produce mucho 4He.

La cadena pp II

Archivo:Tokamak (scheme).jpg

Recreación del campo magnético de un reactor Tokamak.

Generación de neutrinos solares en las cadenas protón-protón.

Trampa magnética toroidal.

Archivo:Classical stellarator (scheme).jpg

Recreación del campo magnético de un reactor Stellarator.

La cadena pp II es dominante a temperaturas de 14 a 23 MK.

El 90% de los neutrinos producidos en la reacción 7Be(ee)7Li* tienen una energía de 0.861 MeV, mientras que un 10% saldrán con 0.383 MeV (dependiendo de si el litio-7 está en estado excitado o no).

La cadena pp III

La cadena pp III es dominante si las temperaturas exceden los 23 MK.

Esta cadena no es la principal fuente de energía del Sol debido a que las temperaturas de su núcleo aun no son los suficientemente altas. Sin embargo, es muy importante en el problema de los neutrinos solares debido a que estas reacciones generan los neutrinos más energéticos. (≤14.06 MeV).

La cadena pp IV o Hep

Hep significa (helio-protón). En este caso el helio-3 reacciona directamente con un protón para dar helio-4

³He + ¹H → 4He + νe + e+

Energía liberada

Si se compara la masa del átomo de helio-4 final con la masa de los cuatro protones iniciales, se ve que 0,007 o 0,7% de la masa original se perdió. Esta masa se convirtió en energía, en forma de rayos gamma y neutrinos lanzados durante las reacciones individuales. La energía neta liberada por la cadena completa es de 26,73 MeV.

Sólo la energía liberada en forma de rayos gamma interactúa con protones y electrones y calienta el interior del Sol. Este calentamiento lo sostiene y evita que colapse bajo su propio peso.

Los neutrinos no interactúan en forma significativa con la materia, ni ayudan a evitar el colapso gravitatorio. Los neutrinos en las cadenas ppI, ppII y ppIII se llevan, respectivamente, el 2,0%, 4,0% y 28,3% de la energía.1

La reacción pep

pep significa (protón-electrón-protón). Esta reacción es muy rara ya que se trata de una colisión de tres partículas simultáneamente lo cual es, lógicamente, mucho más improbable. La reacción pep puede tener lugar en vez de la reacción pp:

¹H + e + ¹H → ²H + νe

En el Sol, la frecuencia de la reacción pep en comparación con la pp es de 1:400 (una vez de cada 400 reacciones). A pesar de ello los neutrinos liberados son más energéticos: mientras los neutrinos del primer paso de las cadenas pp tienen 0,42 MeV, los neutrinos procedentes de la reacción pep producen 1,44 MeV.

Ver también

La sociedad está haciendo esfuerzos por mantenerse al día en las demandas de energía, las cuales se espera que aumenten multiplicadas por ocho para el año 2050 cuando la población mundial alcance la cifra de 12 mil millones de habitantes. La respuesta puede ser la Luna.

“La energía de la fusión del Helio 3 puede ser la clave de la exploración espacial futura y de colonizaciones”, dijo Gerald Kulcinski, Director del Fusion Technology Institute (FTI) de la Universidad de Wisconsin en Madison.

Los científicos estiman que existen un millón de toneladas de helio 3 en la luna, energía suficiente para el mundo para miles de años. El equivalente de una carga simple del trasbordador espacial, que es de aproximadamente 25 toneladas, podría proveer toda la energía que los Estados Unidos requieren durante un año, según el astronauta de la Apolo 17 e investigador del FTI, Harrison Schmitt.

A cosechar dinero de la luna

Cuando el viento solar, ese rápido flujo de partículas cargadas emitido por el sol, llega a la Luna, el helio 3 se deposita en el suelo polvoriento. A través de miles de millones de años se ha ido acumulando. Los bombardeos de los meteoritos dispersan las partículas por encima de varios metros de la superficie lunar.

“El Helio 3 podría ser la cosecha de dinero de la luna”, dijo Kulcinski, un defensor y pionero en este campo, quien visualiza a la Luna convirtiéndose en “la tienda de la Bahia Hudson de la Tierra”. Hoy día el helio 3 podría tener un valor de $4 mil millones la tonelada en términos de su equivalente en energía comparado con el petróleo, según él lo estima. “Cuando la Luna se vuelva independiente, tendrá algo que comerciar”.

~

La investigación sobre la fusión comenzó en 1951 en los Estados Unidos bajo los auspicios del ejército. Después de su desclasificación en 1957, los científicos comenzaron a buscar un candidato de fuente de energía que no produjese neutrones. Aunque Louie Alvarez y Robert Cornog descubrieron el helio 3 en 1939, sólo se sabía que existieran unos pocos cientos de kilos en la Tierra, la mayor parte como sub-producto de la producción de armamento nuclear.

Los astronautas del Apolo encontraron helio 3 en la luna en 1969, pero el enlace entre el isótopo y los recursos lunares no se realizó sino hasta 1986. “Les tomó 15 años a los geólogos lunares y a los pioneros de la fusión para toparse unos con otros”, dijo Schmitt, el último astronauta en dejar pisadas sobre la Luna.

Para resolver las necesidades de energía a largo plazo, los proponentes sostienen que el helio 3 es una mejor apuesta que los combustibles nucleares de primera generación como el deuterio y el tritio (isótopos del hidrógeno), que están siendo actualmente probados a gran escala en reactores termonucleares de cámaras circulares. Estos procesos que por lo general utilizan fuertes campos magnéticos para dominar el tremendo calor, el gas cargado eléctricamente o el plasma que ocurre durante la fusión, han tenido un costo de miles de millones y han dado muy bajos resultados. El Reactor Experimental Termonuclear Internacional o ITER por sus siglas en inglés (International Thermonuclear Experimental Reactor), por ejemplo, no ha producido ni un solo vatio de electricidad por varios años. Claro aún están en fase de construcción muy avanzada pero no se espera que esté listo antes del 2014 y ya se llevan gastados mas de 10 mil millones de dólares.

Aumenta los costos de producción y de seguridad.

“No tengo duda de que eventualmente funcione”, dijo Kulcinski. “Pero tengo serias dudas de si llegará a ser una fuente de energía económica ya sea en la Tierra o en el espacio”. Esto se debe a que los reactores que utilizan la fusión del deuterio y del tritio desprenden el 80 por ciento de su energía en la forma de neutrones radiactivos, que exponencialmente aumentan los costos de producción y de seguridad.

En contraste, la fusión del helio 3 produciría muy poca radioactividad residual. El helio 3, un isótopo del conocido helio utilizado para inflar globos y aeróstatos, tiene un núcleo con dos protones y un neutrón. Un reactor nuclear basado en la fusión del helio 3 y deuterio, que tiene un solo protón nuclear y un neutrón, produciría muy pocos neutrones – alrededor de un 1 por ciento del número de neutrones generados por la reacción del deuterio y tritio. “Podría construirse una planta de helio 3 con toda seguridad en medio de una gran ciudad”, dijo Kulcinski.

La fusión del Helio 3 es igualmente ideal para proveer la energía de las naves espaciales y para los viajes interestelares. A la vez que ofrece el más alto desempeño del poder de fusión – “un sistema de propulsión clásico de Buck Rogers” – los cohetes de helio 3 requerirían de un menor escudo de protección radioactiva, aligerando la carga, dijo Robert Frisbee, un ingeniero de propulsión avanzada del Jet Propulsion Laboratory de la NASA en Pasadena California.

Recientemente el equipo de Kulcinski ha reportado progresos para hacer posible la fusión del helio 3. Dentro de una cámara de laboratorio, los investigadores de Wisconsin han obtenido protones de un plasma de deuterio-helio 3 continuo a un nivel de 2.6 millones de reacciones por segundo. Eso es lo suficientemente rápido para producir energía de fusión pero no para generar electricidad. “Es una demostración del principio, pero dista mucho de producir electricidad o convertirlo en una fuente de energía”, dijo Kulcinski. El presentará los resultados en Amsterdam a mediados de Julio en la Cuarta Conferencia Internacional sobre la Exploración y Uso de la Luna. (Nota del traductor: no olvidar que esta noticia es del año 2000)

Del tamaño de una pelota de baloncesto

La cámara, cuyo tamaño es casi como el de un balón de baloncesto, cuenta con el enfoque electrostático de iones hacia un núcleo denso que utiliza una rejilla esférica, explicó el colega John Santarius, co-autor del estudio. Con algunos refinamientos, semejantes sistemas de fusión de Confinamiento Electrostático Inercial (IEC) podrían producir neutrones y protones de alta energía útiles en la industria y la medicina. Por ejemplo, la tecnología podría generar isótopos PET de vida corta (PET =positron emission tomography) en hospitales, permitiendo tomografías seguras del cerebro en jóvenes y aún en mujeres embarazadas. Los equipos portátiles de IEC podrían llenar el vacío entre las investigaciones de la ciencia actual y la meta final por generar electricidad, dijo Santarius.

~

Este otoño, el equipo de la Universidad de Wisconsin espera demostrar una reacción de fusión de tercera generación entre el helio 3 y partículas de helio 3 en el laboratorio. La reacción estaría totalmente vacía de radiación.

“Aunque el helio 3 sería sumamente apasionante”, dice Bryan Palaszewski, líder de combustibles avanzados en el Glenn Research Center de Lewis Field de la NASA, “primero tenemos que regresar a la luna y ser capaces de realizar ahí operaciones de importancia”.

Imposible de llevarse a cabo económicamente.

Sin embargo por el momento, las cifras de extraer y transportar helio 3 de la luna son algo problemáticas. Aún si los científicos resolvieran la física de la fusión del helio 3, “sería económicamente inviable”, aseveró Jim Benson, presidente de SpaceDev en Poway, California, quienes luchan por ser una de las primeras empresas comerciales en la exploración del espacio. “A menos que esté equivocado, tendríamos que devastar grandes superficies en la Luna”.

Mientras que es cierto que para producir unas 70 toneladas de helio 3 necesitarían calentarse un millón de toneladas de suelo lunar a unos 800 grados Celsius para liberar el gas, los que presentan la propuesta dicen que la devastación de tiras de superficie de la luna, no es la meta. “Hay suficiente tan sólo en Mare Tranquilitatis para que dure por varios cientos de años”, dijo Schmitt. La luna estaría a tiro de piedra de otras fuentes ricas en helio 3, como las atmósferas de Saturno y Urano.

Benson estuvo de acuerdo que la meta es encontrar fuentes de combustible en el espacio. Pero para él, el agua y no el helio 3 es la fuente ideal de combustible. Su meta personal es crear gasolineras en el espacio mediante el minado de asteroides en busca de agua. El agua puede ser electrolizada en combustible de hidrógeno u oxígeno, o utilizada directamente como un propelente mediante super-calentamiento con rayos solares. “El agua es más práctica y confiable a corto plazo”, dijo.

Pero los de la propuesta sólo creen que el helio 3 puede pagarse por sí solo.

“El agua no es tan valiosa”, dijo Schmitt. Además del helio, un proceso de minería produciría agua y oxígeno como sub-productos.