import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_holistic.Holistic(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as holistic:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
# 以下開始不一樣,但是大同小異
results = holistic.process(image)
# Draw landmark annotation on the image.
# 使用了face_landmarks,left_hand_landmarks,right_hand_landmarks,pose_landmarks
# 基本語法與前面幾個都差不多
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.face_landmarks, mp_holistic.FACE_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Holistic', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()