σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard limit factor sigma deisenroth
xari(xi) = 1/n*(x1+x2+ ....+xn)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n) = σd^±ζd(ϕd;n) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
limit factor sigma deisenroth
σd(ϕd;n) = σd^±ζd(ϕd;n) = x(ϕd;n)/µgeo
limit factor phi deisenroth
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
limit exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^(±√(-ln(ϕd)/n)) = x(ϕd;n)/µgeo ; σd=1,01
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^(±√(-ln(ϕd)/n)) = x(ϕd;n)/µgeo ; σd=2
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd(ϕd;n)*x/µgeo = true scattering factor product (wahres Streufaktorprodukt)
sp = sd*xgeo/µgeo = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%) =x(n,%)/µgeo = true x confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
σd(n,%) =µgeo(n,%)/µgeo
CLd(n,%,σd) = true x confidence limit deisenroth (wahre x Vertrauensgrenze)
sd(n,%) = xgeo(n,%,sd)/xgeo = estimated xgeo confidence limit factor deisenroth (gesch. VGF)
CLd(n,%,sd) = estimated xgeo confidence limit deisenroth (geschätzte Vertrauensgrenze)
standard limit factor sigma deisenroth
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
probaility limit phi deisenroth
probability limit exponent zeta deisenroth
scattering factor analysis deisenroth
scattering factor limit analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
Confidence limit factor sigma deisenroth
σdij = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth ij
sdij = sdi^(Zdij^(2^0,5)/(ni-2)^0,5) = estimated confidence limit factor sigma deisenroth ij
σdi(n,%) = σdi^(ζd/ni^0,5) = true confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
probability phi deisenroth
ϕd(ζd) = e^-ζd² = true probability phi deisenroth
Pd(Zd) = e^-Zd² = estimated probability phi deisenroth
probability limit phi deisenroth
ϕdij(ζdij) = e^-ζdij² = true probability limit phi deisenroth
Pdij(Zdij) = e^-Zdij² = estimated probability limit phi deisenroth
probability exponent zeta deisenroth
ζd(ϕd) = ±√(-ln(ϕd)) = true probablitiy exponent zeta deisenroth
Zd(Pd) = ±√(-ln(Pd))= estimated probablitiy exponent zeta deisenroth
probability limit exponent zeta deisenroth
ζdij(ϕdij) = ±√(-ln(ϕdij))= true probablitiy limit exponent zeta deisenroth
Zdij(Pdij) = ±√(-ln(Pdij))= estimated probablitiy limit exponent zeta deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.