scattering probability limit cover factor normal distribution sigma (σdij) zeta (ζdij) phi (ϕdij) deisenroth
scattering probability limit cover factor normal distribution sigma (σdij) zeta (ζdij) phi (ϕdij) deisenroth
xgeo difference factor sigma deisenroth σddiff
σddiff = xgeo1 / xgeo2 = 3 = xgeo difference factor sigma deisenroth σddiff
standard scattering probability limit factor sigma deisenroth σdi
σd1 = σd2 = 2 = standard scattering probability limit factor sigma deisenroth σdi
n1 = 1; n2 = 100
scattering probabiliy limit factor normal distribution sigma (σdi) zeta (ζdi) phi (ϕdi) deisenroth
σdi(ϕd;σdi;ni) = σdi^(±√(-ln(фd)/ni))
=σdi^(± ζdi(ϕd;ni))
=xi(ϕd;σdi;ni)/µgeoi
scattering probabiliy limit cover factor normal distribution sigma (σdij) zeta (ζdij) phi (ϕdij) deisenroth
ζdij(σddiff; σdi; ni) = ln (σddiff /(lnσd1/(√(n1))+ lnσd2/(√(n2 )))= lnσddiff/(lnσd1/√(n1) - lnσd2/(√(n2))) = probability cover exponent zeta deisenroth ζdij
ϕdij(σddiff, σdi; ni)=e^(-ζdijmin^2) and e^(-ζdijmax^2) = probability cover factor phi deisenroth ϕdij
σdij(σdi; σddiff; ni) = σdi^(± ζdij)=σdi^(±√(-ln(ϕdmin)/ni)) and σdi^(±√(-ln(ϕdmax)/ni))= scattering cover factor sigma deisenroth σdij