ζ(ϕ;n) = ±√(-ln(ϕ)/n) = confidence limit exponent zeta deisenroth = ζd(ϕd;n) = ln(x/µ)/ln(σd)/√n
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
x(ϕ;n) = µ∗σ^±√(-ln(ϕ)/n)
x(phi,sigma,µ,n) deisenroth
x(ϕ;σ;µ;n) = µ∗σ^±√(-ln(ϕ)/n)
x(zeta,sigma,µ) deisenroth
x(ζ;σ;µ) = µ∗σ^±ζ
x(zeta,sigma,phi;µ) deisenroth
x(ζ;σ;ϕ;µ) = µ∗σ^±ζ(ϕ)
x(zeta,sigma,µ,n) deisenroth
x(ζ;σ;µ;n) = µ∗σ^(±ζ/√n)
probability exponent zeta deisenroth = ζ
ζ = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ)
probability exponent zeta(phi) deisenroth = ζ(ϕ)
ζ(ϕ) = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ) = probablitiy exponent zeta(phi) deisenroth
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n)
ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ln(x/µ)/ln(σ)/√n = probablitiy exponent zeta(phi;n) deisenroth
probability exponent zeta(x/µ;sigma) deisenroth = ζ(x/µ;σ)
ζ(x/µ;σ) = ln(x/µ)/ln(σ) = ±√(-ln(ϕ)) = probablitiy exponent zeta(x/µ;sigma) deisenroth
probability exponent zeta(x/µ;sigma;n) deisenroth = ζ(x/µ;σ;n)
ζ(x/µ;σ;n) = ln(x/µ)/ln(σ)/√n = ±√(-ln(ϕ)/n) = probablitiy exponent zeta(x/µ;sigma;n) deisenroth
probability factor phi(zeta) deisenroth = ϕ(ζ)
ϕ(ζ) = e^-(ζ^2)
probability factor phi(zeta,n) deisenroth = ϕ(ζ;n)
ϕ(ζ;n) = e^-(ζ^2/n) = e^-(ζ^2/n )
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^(-1/n) = ϕ^n
standard factor sigma deisenroth σ and s (standardfaktor sigma deisenroth)
σ = e^(2*ln(µari/µgeo))^0,5 = true standard factor sigma (wahrer standardfaktor sigma deisenroth) = σd
s = e^(2*ln(xari/xgeo))^0,5 = estimated standard factor sigma (geschätzter standardfaktor sigma deisenroth) = sd