sigma zeta phi diagram deisenroth = ϕ(ζ;n) = e^-(ζ^2/n)
ζ = ±√(-ln(ϕ)/n) = ln(x/µ)/ln(σd)/√n
Impressum phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
x(ϕ;n) = µ∗σd^±√(-ln(ϕ)/n)
x(phi,sigma,µ,n) deisenroth
x(ϕ;σd;µ;n) = µ∗σd^±√(-ln(ϕ)/n)
x(zeta,sigma,µ) deisenroth
x(ζ;σ;µ) = µ∗σd^±ζ
x(zeta,sigma,phi;µ) deisenroth
x(ζ;σd;ϕ;µ) = µ∗σd^±ζ(ϕ)
x(zeta,sigma,µ,n) deisenroth
x(ζ;σd;µ;n) = µ∗σd^(±ζ/√n)
probability exponent zeta deisenroth = ζ
ζ = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ)
probability exponent zeta(phi) deisenroth = ζ(ϕ)
ζ(ϕ) = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ) = probability exponent zeta(phi) deisenroth
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n)
ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ln(x/µ)/ln(σd)/√n = probability exponent zeta(phi;n) deisenroth
probability exponent zeta(x/µ;sigma) deisenroth = ζ(x/µ;σd)
ζ(x/µ;σd) = ln(x/µ)/ln(σd) = ±√(-ln(ϕ)) = probability exponent zeta(x/µ;sigma) deisenroth
probability exponent zeta(x/µ;sigma;n) deisenroth = ζ(x/µ;σd;n)
ζ(x/µ;σd;n) = ln(x/µ)/ln(σd)/√n = ±√(-ln(ϕ)/n) = probability exponent zeta(x/µ;sigma;n) deisenroth
probability factor phi(zeta) deisenroth = ϕ(ζ)
ϕ(ζ) = e^-(ζ^2)
probability factor phi(zeta,n) deisenroth = ϕ(ζ;n)
ϕ(ζ;n) = e^-(ζ^2/n) = e^-(ζ^2/n )
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^(-1/n) = ϕ^n
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n)
ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σd)/√n
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n)
ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σd)/√n
sigma zeta phi diagram deisenroth = ϕ(ζ;n) =e^-(ζ^2/n)
ζ = ±√(-ln(ϕ)/n)
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd *σari = true scattering factor product (wahres Streufaktorprodukt)
sp = sd * sari = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%)=σd^(ζd(%)/n^0,5)=xgeo(n,%)/µgeo = true xgeo confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
sd(n,%)=?=xgeo(n,%)/xgeo(100%)=estimated xgeo confidence limit factor sigma deisenroth (geschätz. Vertrauensgrenzfaktor)
sd(n,100%) = sd^±(ζd(100%)/n^0,5) = sd^(±1/n^0,5) = 1 = xgeo(n,100%)/xgeo(100%) =1
sd(n,0%) = sd^±(ζd(0%)/n^0,5) = sd^±(∞/n^0,5) = ∞/1 and 1/∞ = ∞/xgeo(100%) and xgeo(100%)/∞=0
CLd(n,%,σd) = σd^(ζd(%)/n^0,5) * xgeo = true xgeo confidence limit deisenroth (wahre xgeo Vertrauensgrenze)
sd(n,%) =? (?= sd^(1/ζd(1-%)/(n)^0,5)=?) = xgeo(n,%,sd)/xgeo = estimated xgeo confidence limit factor deisenroth (gesch. VGF)
CLd(n,%,sd) =?=(?= sd^(1/ζd(1-%)^(2^0,5)/(n-2)^0,5)*xgeo) = estimated xgeo confidence limit deisenroth (geschätzte Vertrauensgrenze)
probability limit factor σd(ϕd;n)
probability factor sigma deisenroth σd(ϕd;n)
probability factor phi deisenroth ϕd(xgeo;n)
probability exponent zeta deisenroth ζd
probability factor sigma deisenroth σd
probability limit base factor sigma deisenroth σd
standard probability limit factor sigma deisenroth σd
standard limit factor sigma deisenroth σd
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
confidence limit base σd
scattering factor analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
σd (sd) = standard probability factor sigma Deisenroth
σd (sd) = Standard - Wahrscheinlichkeitsfaktor sigma Deisenroth
scattering factor analysis (Wahrscheinlichkeitsfaktor - Analyse)
Confidence limit factor sigma deisenroth
σdij = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth ij
sdij = ? = estimated confidence limit factor sigma deisenroth ij
σdi(n,%) = σdi^(ζd/ni^0,5) = true confidence limit factor sigma deisenroth i
sdi(n,%) = ? = estimated confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth ij
Zdij=?= estimated confidence limit exponent zeta deisenroth ij
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
probability phi deisenroth ϕd(ζd)
ϕd(ζd) = e^-ζd² = true probability phi deisenroth
Pd(Zd) = e^-Zd² = estimated probability phi deisenroth
probability limit phi deisenroth ϕdij(ζdij)
ϕdij(ζdij) = e^-ζdij² = true probability limit phi deisenroth
Pdij(Zdij) = e^-Zdij² = estimated probability limit phi deisenroth
probability exponent zeta deisenroth ζd(ϕd)
ζd(ϕd) = ±√(-ln(ϕd)) = true probablitiy exponent zeta deisenroth
Zd(Pd) = ±√(-ln(Pd))= estimated probablitiy exponent zeta deisenroth
probability limit exponent zeta deisenroth ζdij(ϕdij)
ζdij(ϕdij) = ±√(-ln(ϕdij))= true probablitiy limit exponent zeta deisenroth ij
Zdij(Pdij) = ±√(-ln(Pdij))= estimated probablitiy limit exponent zeta deisenroth ij
probability limit factor sigma deisenroth σdij
σdij = σdi^(ζdij/ni^0,5) = true probability limit factor sigma deisenroth ij
sdij = ? = estimated probability limit factor sigma deisenroth ij
probability limit factor sigma deisenroth σdi(ζdi;ni)
σdi(ζdi;ni) = σdi^(ζdi/ni^0,5) = true probability limit factor sigma deisenroth i
sdi(Zdi,ni) = ? = estimated probability limit factor sigma deisenroth i
probability limit factor sigma deisenroth σd(%;n)
σd(%;n) = σd^(ζd(%)/n^0,5) = xgeo(%;n)/µgeo = true xgeo probability limit factor sigma deisenroth
sd(%;n) = ? = xgeo(%;n)/µgeo = estimated xgeo probability limit factor sigma deisenroth
standard probability limit factor sigma deisenroth σd
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.