probability limit phi deisenroth = ϕd
ϕd = e^(-n*(ln(x/µ)/ln(σ))²)
phi limit factor normal distribution deisenroth = ϕd(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability limit factor phi(x/µ;sigma;n) deisenroth = ϕd(x/µ;σ;n)
ϕd(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability limit factor sigma(phi;n) deisenroth = σ(ϕd;n)
σ(ϕd;n) = σ^±√(-ln(ϕ)/n) = x(ϕ)/µ
x(ϕd;n) = µ∗σ^±√(-ln(ϕ)/n)
probability limit factor phi(n) deisenroth = ϕd(n)
ϕd(n) = ϕd^n
standard limit factor sigma deisenroth σ and s (standardgrenzfaktor sigma deisenroth)
σ = e^(2*ln(µari/µgeo))^0,5 = true standard limit factor sigma (wahrer standardgrenzfaktor sigma deisenroth) = σd
s = e^(2*ln(xari/xgeo))^0,5 = estimated standard limit factor sigma (geschätzter standardgrenzfaktor sigma deisenroth) = sd
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σ)^2)
µgeo = µari/e^(0,5*ln(σ)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(s;xari) = xari/e^(0,5*ln(s)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(s;xgeo) = xgeo*e^(0,5*ln(s)^2)
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
cumulative probability limit factor distribution function phi-cum deisenroth = ϕc(x/µ;σd;n) = 1/2*ϕd(x/µ;σc;n) and sigma-cum deisenroth = σc(ϕc;n) = σd^(±√(-ln(2*ϕc)/n))
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.