σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard limit factor sigma deisenroth
true arithmetic mean (µari) and true geometric mean (µgeo)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2)
µgeo = µari/e^(0,5*ln(σd)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd;xari) = xari/e^(0,5*ln(sd)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
true standard scattering probability limit factor sigma deisenroth σd and estimated standard scattering probability limit factor sigma deisenroth sd
σd = e^(2*ln(µari/µgeo))^0,5
sd = e^(2*ln(xari/xgeo))^0,5
factor normal distribution (Faktor Normalverteilung)
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=1,01
factor normal distribution simulation (Faktor Normalverteilung Simulation)
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n) = σd^(±ζd(ϕd;n) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ϕd(σd;n)=ϕd(σd;n=1)^-n
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
probability limit factor sigma deisenroth
σd(ϕd;n) = σd^(±ζd(ϕd;n) = x(ϕd;n)/µgeo
probability limit exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
probability limit factor phi deisenroth
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
limit factor distribution deisenroth
ϕd(xgeo;n) = e^(-n*((ln(xgeo/µgeo))/(ln(σd))²)
question:
σxgeo(ϕd;n)=?
hypothesis:
σd(ϕd;n) = x(ϕd;n)/µgeo = σd^(±√((-ln(ϕd)/n)))
σxgeo(ϕd;n) = xgeo(ϕd;n)/µgeo = σd^-(((√-ln(ϕd))*-2*ϕd)/n^0,5)
test:
monte carlo simulation excel xgeo(n)*sd(n); (N = 10000)
excel random generator scattering probability limit factor normal distribution sigma zeta phi deisenroth
x(ϕd)/µgeo = ?
x(ϕd)/µgeo = σd^(±√((-ln(ϕd))))
= σd^(((GANZZAHL((EXP(LN((0,5+ZUFALLSZAHL())))))-0,5)*2)*((-LN(ZUFALLSZAHL()))^0,5))
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,) = x(ϕd;n)/µgeo
σd(ϕd;n)= σd^(±√((-ln(ϕd)/n))) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
x(ϕd;n) = µgeo∗σd^(±√((-ln(ϕd)/n)))
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ζd(ϕd) = ±√(-ln(ϕd))
true arithmetic mean (µari) and true geometric mean (µgeo)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sdi;n) = xari/e^(0,5*ln(sd)^2)
probability limit base sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit base sigma deisenroth
standard probability limit factor sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit exponent zeta deisenroth
ζd(ϕd=0,368) = 1
standard probability limit factor phi deisenroth
ϕd(ζd=1) = e^-ζd² = e^-1² = 0,368
standard sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard zeta deisenroth
ζd(ϕd=0,368) = 1
standard phi deisenroth
ϕd(ζd=1) = e^-ζd² = e^-1² = 0,368
confidence limit base deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
confidence limit factor sigma deisenroth
σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5)
confidence limit exponent zeta deisenroth
ζd(ϕd) = ±√(-ln(ϕd))
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
confidence limit factor phi deisenroth
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
standard confidence limit factor sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard confidence limit exponent zeta deisenroth
ζd(ϕd=0,368) = 1
standard confidence limit factor phi deisenroth
ϕd(ζd=1) = e^-ζd² = e^-1² = 0,368
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd(ϕd;n)*x/µgeo = true scattering factor product (wahres Streufaktorprodukt)
sp = sd*xgeo/µgeo = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%) =x(n,%)/µgeo =σd^(ζd(%)/n^0,5)= true x confidence limit factor sigma deisenroth (wahrer µgeo Vertrauensgrenzfaktor)
σd(n,%)=µgeo(n,%)/µgeo=σd^(ζd(%)/n^0,5)=true µgeo confidence limit factor sigma deisenroth (wahre µgeo Vertrauensgrenze)
CLd(n,%,σd) = σd^(ζd(%)/n^0,5) * x = true x confidence limit deisenroth (wahre x Vertrauensgrenze)
sd(n,%) = xgeo(n,%,sd)/xgeo = estimated xgeo confidence limit factor deisenroth (gesch. VGF)
CLd(n,%,sd) = estimated xgeo confidence limit deisenroth (geschätzte Vertrauensgrenze)
extreme limit factors (extreme Grenzfaktoren)
sd(n,100%) = sd^±(ζd(100%)/n^0,5) = sd^(±0/n^0,5) = 1 = xgeo(n,100%)/xgeo(100%) = 1
sd(n,0%) = sd^±(ζd(0%)/n^0,5) = sd^±(∞/n^0,5) = ∞/1 and 1/∞ = ∞/xgeo(100%) and xgeo(100%)/∞=0
σd(n,100%) = 1
σd(n,0%) = 0 and ∞
σd(n,36,8%) = σd^(1/n^0,5)
see also
probability limit factor σd(ϕd;n)
probability factor sigma deisenroth σd(ϕd;n)
probability factor phi deisenroth ϕd(xgeo;n)
probability exponent zeta deisenroth ζd
probability factor sigma deisenroth σd
probability limit base factor sigma deisenroth σd
standard probability limit factor sigma deisenroth σd
standard limit factor sigma deisenroth σd
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
confidence limit base σd
scattering factor analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
σd (sd) = standard probability factor sigma Deisenroth
σd (sd) = Standard - Wahrscheinlichkeitsfaktor sigma Deisenroth
scattering factor analysis (Wahrscheinlichkeitsfaktor - Analyse)
Confidence limit factor sigma deisenroth
σdij = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth ij
sdij = ? = estimated confidence limit factor sigma deisenroth ij
σdi(n,%) = σdi^(ζd/ni^0,5) = true confidence limit factor sigma deisenroth i
sdi(n,%) = ? = estimated confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth ij
Zdij=?= estimated confidence limit exponent zeta deisenroth ij
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
probability phi deisenroth ϕd(ζd)
ϕd(ζd) = e^-ζd² = true probability phi deisenroth
Pd(Zd) = e^-Zd² = estimated probability phi deisenroth
probability limit phi deisenroth ϕdij(ζdij)
ϕdij(ζdij) = e^-ζdij² = true probability limit phi deisenroth
Pdij(Zdij) = e^-Zdij² = estimated probability limit phi deisenroth
probability exponent zeta deisenroth ζd(ϕd)
ζd(ϕd) = ±√(-ln(ϕd)) = true probablitiy exponent zeta deisenroth
Zd(Pd) = ±√(-ln(Pd))= estimated probablitiy exponent zeta deisenroth
probability limit exponent zeta deisenroth ζdij(ϕdij)
ζdij(ϕdij) = ±√(-ln(ϕdij))= true probablitiy limit exponent zeta deisenroth ij
Zdij(Pdij) = ±√(-ln(Pdij))= estimated probablitiy limit exponent zeta deisenroth ij
probability limit factor sigma deisenroth σdij
σdij = σdi^(ζdij/ni^0,5) = true probability limit factor sigma deisenroth ij
sdij = ? = estimated probability limit factor sigma deisenroth ij
probability limit factor sigma deisenroth σdi(ζdi;ni)
σdi(ζdi;ni) = σdi^(ζdi/ni^0,5) = true probability limit factor sigma deisenroth i
sdi(Zdi,ni) = ? = estimated probability limit factor sigma deisenroth i
probability limit factor sigma deisenroth σd(%;n)
σd(%;n) = σd^(ζd(%)/n^0,5) = x(%;n)/µgeo = true xgeo probability limit factor sigma deisenroth
sd(%;n) = ? = xgeo(%;n)/µgeo = estimated xgeo probability limit factor sigma deisenroth
standard probability limit factor sigma deisenroth σd
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.