phi cumulative factor distribution function = ϕc = 0,5*ϕ(x/µ;σd;n)
phi cumulative factor product distribution function deisenroth = ϕcp(xgeo/µgeo*sd>1) = ϕcp^n
cumulative probability limit factor product distribution function phi-cum-product deisenroth = ϕcp(σcp;n) and sigma-cum-product deisenroth = σcp(ϕcp;n)
phi-cum deisenroth
ϕc(x;n)=1/2*ϕ(x;n)=1/2∗e^((-(ln(x/µ)/(lnσd))^2 ) )^n
phi-cum-product deisenroth
ϕcp(x;n)=(1/2 *ϕ(x;n))^n=(1/2∗e^(-(ln(x/µ)/(lnσd))^2 ) )^n
sigma-cum-product deisenroth
σcp(ϕ;n) = x/µ (ϕ;n)=σd^(±√(-lnϕ)/n))
phi deisenroth ϕ or ϕd
ϕ(x;n) = ϕ(x)^n = (e^(-(ln(x/µ)/(lnσd))^2 ))^n
sigma deisenroth = σ = x/µ =σ(σd;ϕ;n) = x/µ = σd^(±√(-ln(ϕ)/n ))
σd = e^(2*ln(µari/µgeo))^0,5 = true standard scattering factor sigma deisenroth (wahrer standardstreufaktor sigma deisenroth)
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2)
µgeo = µari/e^(0,5*ln(σd)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd;xari) = xari/e^(0,5*ln(sd)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
true standard scattering probability limit factor sigma deisenroth σd and estimated standard scattering probability limit factor sigma deisenroth sd
σd = e(2*ln(µari/µgeo))^0,5
sd = e(2*ln(xari/xgeo))^0,5
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σ(ϕ;n)= σd^(±√((-ln(ϕd)/n))) = x(ϕ;n)/µ
σ(ϕ;n) = σd^(±ζd(ϕd;n) = x(ϕ;n)/µ
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σd))²)
x(ϕ;n) = µ∗σd^(±√((-ln(ϕ)/n)))
ϕ(σd;n) = e^(-n*((ln(x(ϕ;n)/µ))/(ln(σd))²)
ζd(ϕ;n) = ±√(-ln(ϕd)/n)
factor normal distribution (Faktor Normalverteilung)