µgeo or µ = µari/e^(0,5*(ln σd)^2) ≠ µari for phi factor and phi density normal distribution
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2) ≠ µgeo
µgeo = µari/e^(0,5*ln(σd)^2) ≠ µari
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd;xari) = xari/e^(0,5*ln(sd)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
true standard scattering probability limit factor sigma deisenroth σd and estimated standard scattering probability limit factor sigma deisenroth sd
σd = e(2*ln(µari/µgeo))^0,5
sd = e(2*ln(xari/xgeo))^0,5
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n)= σd^(±√((-ln(ϕd)/n))) = x(ϕd;n)/µgeo
σd(ϕd;n) = σd^(±ζd(ϕd;n) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
x(ϕd;n) = µgeo∗σd^(±√((-ln(ϕd)/n)))
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ζd(ϕd) = ±√(-ln(ϕd)/n)
factor normal distribution (Faktor Normalverteilung)
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=1,01
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=2