probability limit factor normal distribution sigma zeta phi deisenroth
σ(ϕ;n) = σ^±ζ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
ϕ(σ;n) = e^(-n*((ln(x(ϕ;n)/µ))/(ln(σ))²)
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
probability limit factor sigma deisenroth
σ(ϕ;n) = σ^(±ζ(ϕ;n) = x(ϕ;n)/µ
probability limit factor phi deisenroth
ϕ(σ;n) = e^(-n*((ln(x(ϕ;n)/µ))/(ln(σ))²)
probability limit exponent zeta deisenroth
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
probability limit factor sigma probability limit exponent zeta and probability limit factor phi diagram deisenroth
probability limit exponent zeta deisenroth
ζdi(ϕdi;ni) = ±√(-ln(ϕdij)/ni)= true probablitiy limit exponent zeta deisenroth
Zdi(Pdi;ni) = ±√(-ln(Pdi)/ni)= estimated probablitiy limit exponent zeta deisenroth
probability exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n) = true probablitiy exponent zeta deisenroth
Zd(Pd;n) = ±√(-ln(Pd)/n)= estimated probablitiy exponent zeta deisenroth
probability phi deisenroth
ϕd(ζd) = e^-(ζd²) = true probability phi deisenroth
Pd(Zd) = e^-(Zd²) = estimated probability phi deisenroth
probability limit phi deisenroth
ϕdi(ζdi) = e^-(ζdi²) = true probability limit phi deisenroth
Pdi(Zdi;ni) = e^-(Zdi²/ni) = estimated probability limit phi deisenroth
probability limit factor sigma ij deisenroth
σdi(ϕdi;ni) = σdi^√(-ln(ϕdi)/ni) = true probability limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(sdi)/√ni + ln(sdj)/√nj) = probability limit exponent zeta deisenroth
xgeoi = estimated geomean i
sdi = estimated standard scattering factor simga deisenroth i
standard probability limit factor sigma deisenroth σd
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=1,01
confidence limit exoponent zeta deisenroth ζd
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n) = σd^(±√(-ln(ϕd)/n)) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
ϕd(σd;n) = e^(-n*((ln(xgeo(ϕd;n)/µgeo))/(ln(σd))²)
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
limit factor sigma deisenroth
σd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo
limit factor phi deisenroth
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
limit exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd *σari = true scattering factor product (wahres Streufaktorprodukt)
sp = sd * sari = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%) =x(n,%)/µgeo =σd^(Z(%)/n^0,5)= true xgeo confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
σd(n,%) =µgeo(n,%)/µgeo =σd^(Z(%)/n^0,5)= true µgeo confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
probability limit factor σd(ϕd;n)
probability factor sigma deisenroth σd(ϕd;n)
probability factor phi deisenroth ϕd(xgeo;n)
probability exponent zeta deisenroth ζd
probability factor sigma deisenroth σd
probability limit base factor sigma deisenroth σd
standard probability limit factor sigma deisenroth σd
standard limit factor sigma deisenroth σd
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
confidence limit base σd
scattering factor analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
σd (sd) = standard probability factor sigma Deisenroth
σd (sd) = Standard - Wahrscheinlichkeitsfaktor sigma Deisenroth
scattering factor analysis (Wahrscheinlichkeitsfaktor - Analyse)
probability limit exponent zeta deisenroth
ζdi(ϕdi;ni) = ±√(-ln(ϕdij)/ni)= true probablitiy limit exponent zeta deisenroth
Zdi(Pdi;ni) = ±√(-ln(Pdi)/ni)= estimated probablitiy limit exponent zeta deisenroth
probability exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n) = true probablitiy exponent zeta deisenroth
Zd(Pd;n) = ±√(-ln(Pd)/n)= estimated probablitiy exponent zeta deisenroth
probability phi deisenroth
ϕd(ζd) = e^-(ζd²) = true probability phi deisenroth
Pd(Zd) = e^-(Zd²) = estimated probability phi deisenroth
probability limit phi deisenroth
ϕdi(ζdi) = e^-(ζdi²) = true probability limit phi deisenroth
Pdi(Zdi) = e^-(Zdi²) = estimated probability limit phi deisenroth
Confidence limit factor sigma deisenroth
σdi(ϕdi;ni) = σdi^√(-ln(ϕdi)/ni) = true confidence limit factor sigma deisenroth i
sdi(Pdi;ni) = sdi^(√(-ln(Pdij)/ni) = estimated confidence limit factor sigma deisenroth ij
σdi(ni,%) = σdi^(√(-ln(%)/ni) = true confidence limit factor sigma deisenroth i
sdi(ni,%) = sdi^(√(-ln(%)/ni)) = estimated confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth
Zdij=(ln(xgeoj/xgeoi)/(ln(sdi)/√(ni -2)+ln(sdj)/√(nj-2))^(1/2^0,5) = estimated confidence limit exponent zeta deisenroth
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
standard probability limit factor sigma deisenroth σd
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.