wahrscheinlichkeitsfaktor σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
wahrscheinlichkeitsfaktor sigma σ(ϕ;n)
standard wahrscheinlichkeitsfaktor normalverteilung funktion sigma zeta phi deisenroth
σ(ϕ;n) = σ^±ζ(ϕ;n) = x(ϕ;n)/µ
σ(ϕ;n) = σ^±√(-ln(ϕ)/n)= x(ϕ;n)/µ
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
wahrscheinlichkeitsfaktor sigma deisenroth
σ(ϕ;n) = σ^(±ζ(ϕ;n) = x(ϕ;n)/µ
wahrscheinlichkeitsfaktor phi deisenroth
ϕ(σ;n) = e^(-n*((ln(x(ϕ;n)/µ))/(ln(σ))²)
wahrscheinlichkeitsexponent zeta deisenroth
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer standardstreufaktor sigma deisenroth)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter standardstreufaktor sigma deisenroth)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ = Vertrauensgrenzfaktor
standard limit factor sigma deisenroth
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
probaility limit phi deisenroth
probability limit exponent zeta deisenroth
scattering factor analysis deisenroth
scattering factor limit analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo or µ = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
σd (sd) = standard probability factor sigma Deisenroth
σd (sd) = Standard - Wahrscheinlichkeitsfaktor sigma Deisenroth
scattering factor analysis (Wahrscheinlichkeitsfaktor - Analyse)
Confidence limit factor sigma deisenroth
σdij = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth ij
sdij = sdi^(Zdij^(2^0,5)/(ni-2)^0,5) = estimated confidence limit factor sigma deisenroth ij
σdi(n,%) = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth i
sdi(n,%) = sdi^(Zdij^(2^0,5)/((ni-2)^0,5) = estimated confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth ij
Zdij=(ln(xgeoj/xgeoi)/(ln(sdi)/√(ni -2)+ln(sdj)/√(nj-2))^(1/2^0,5) = estimated confidence limit exponent zeta deisenroth ij
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
probability phi deisenroth ϕd(ζd)
ϕd(ζd) = e^-ζd² = true probability phi deisenroth
Pd(Zd) = e^-Zd² = estimated probability phi deisenroth
probability limit phi deisenroth ϕdij(ζdij)
ϕdij(ζdij) = e^-ζdij² = true probability limit phi deisenroth
Pdij(Zdij) = e^-Zdij² = estimated probability limit phi deisenroth
probability exponent zeta deisenroth ζd(ϕd)
ζd(ϕd) = ±√(-ln(ϕd)) = true probablitiy exponent zeta deisenroth
Zd(Pd) = ±√(-ln(Pd))= estimated probablitiy exponent zeta deisenroth
probability limit exponent zeta deisenroth ζdij(ϕdij)
ζdij(ϕdij) = ±√(-ln(ϕdij))= true probablitiy limit exponent zeta deisenroth
Zdij(Pdij) = ±√(-ln(Pdij))= estimated probablitiy limit exponent zeta deisenroth
probability limit factor sigma deisenroth σdij
σdij = σdi^(ζdij/ni^0,5) = true probability limit factor sigma deisenroth ij
sdij = sdi^(Zdij^(2^0,5)/(ni-2)^0,5) = estimated probability limit factor sigma deisenroth ij
probability limit factor sigma deisenroth σdi(ζdi;ni)
σdi(ζdi;ni) = σdi^(ζdi/ni^0,5) = true probability limit factor sigma deisenroth i
sdi(Zdi,ni) = sdi^(Zdi^(2^0,5)/((ni-2)^0,5) = estimated probability limit factor sigma deisenroth i
probability limit factor sigma deisenroth σd(%;n)
σd(%;n) = σd^(ζd(%)/n^0,5) = xgeo(%;n)/µgeo = true xgeo probability limit factor sigma deisenroth
sd(%;n) = sd^(Zd(%)^(2^0,5)/((ni-2)^0,5) = xgeo(%;n)/µgeo = estimated xgeo probability limit factor sigma deisenroth
standard probability limit factor sigma deisenroth
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.