confidence limit factor sigma xgeo = σxgeo(%;n) = Vertrauensgrenzfaktor xgeo
scattering probability limit factor normal distribution sigma zeta phi deisenroth
σd(ϕd;n) = σd^±ζd(ϕd;n) = x(ϕd;n)/µgeo
σd(ϕd;n)= σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo
σd(%;n)= σd^±√(-ln(%)/n) = x(%;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
x(ϕd;n) = µgeo∗σd^±√(-ln(ϕd)/n)
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ϕd(σd;n) = e^-(ζd(ϕd;n)²)
ϕd(x=constant;σd;n) = ϕd(x=constant;σd)^n
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
σd(%;n) = σd^√(-ln(%)/n)= σd^(ζd(%;n)) = x(%)/µgeo(100%)
true arithmetic mean (µari) and true geometric mean (µgeo)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sdi;n) = xari/e^(0,5*ln(sd)^2)
probability limit base sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit base sigma deisenroth
standard probability limit factor sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit exponent zeta deisenroth
ζd(ϕd=0,368;n=1) = 1
probability limit exponent zeta(phi) deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
standard probability limit factor phi deisenroth
ϕd(ζd=1;n=1) = e^-(ζd(ϕd=0,368;n=1)²) = e^-1² = 0,368
standard sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard zeta deisenroth
ζd(ϕd=0,368) = 1
standard phi deisenroth
ϕd(ζd=1;n=1) = e^-ζd(ϕd=0,368;n=1)² = e^-1² = 0,368
probability phi(zeta;n) deisenroth
ϕd(ζd;n) = e^(ζd^2/n)= e^(ln(ϕd)/n)
probability phi(n) deisenroth
ϕd(n) = ϕd^(n)
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd(ϕd;n)*x/µgeo = true scattering factor product (wahres Streufaktorprodukt)
sp = sd*xgeo/µgeo = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%) =xgeo(n,%)/µgeo =σd^(Z(%)/n^0,5)= true x confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
σd(n,%) =µgeo(n,%)/µgeo =σd^(Z(%)/n^0,5)= true µgeo confidence limit factor sigma deisenroth (wahrer Vertrauensgrenzfaktor)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ = Vertrauensgrenzfaktor
extreme limit factors (extreme Grenzfaktoren)
sd(n,100%) = sd^±(ζd(100%)/n^0,5) = sd^(±0/n^0,5) = 1 = xgeo(n,100%)/xgeo(100%) = 1
sd(n,0%) = sd^±(ζd(0%)/n^0,5) = sd^±(∞/n^0,5) = ∞/1 and 1/∞ = ∞/xgeo(100%) and xgeo(100%)/∞=0
σd(n,100%) = 1
σd(n,0%) = 0 and ∞
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.