streufaktor sigma = σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
streufaktor sigma = σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
standardstreufaktor sigma = σ
σ = e^(2*ln(µari/µgeo))^0,5 = standardstreufaktor sigma deisenroth = σd
standard faktor sigma = σ
σ = e^(2*ln(µari/µgeo))^0,5 = standardfaktor sigma deisenroth = σd
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
x(ϕ;n) = µ∗σ^±√(-ln(ϕ)/n)
x(phi,sigma,µ,n) deisenroth
x(ϕ;σ;µ;n) = µ∗σ^±√(-ln(ϕ)/n)
x(zeta,sigma,µ) deisenroth
x(ζ;σ;µ) = µ∗σ^±ζ
x(zeta,sigma,µ,n) deisenroth
x(ζ;σ;µ;n) = µ∗σ^(±ζ/√n)
probability exponent zeta deisenroth = ζ
ζ = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ)
probability exponent zeta(phi) deisenroth = ζ(ϕ)
ζ(ϕ) = ±√(-ln(ϕ)) = ln(x/µ)/ln(σ) = probability exponent zeta(phi) deisenroth
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n)
ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ln(x/µ)/ln(σ)/√n = probability exponent zeta(phi) deisenroth
probability exponent zeta(x/µ;sigma) deisenroth = ζ(x/µ;σ)
ζ(x/µ;σ) = ln(x/µ)/ln(σ) = ±√(-ln(ϕ)) = probability exponent zeta(x/µ;sigma) deisenroth
probability exponent zeta(x/µ;sigma;n) deisenroth = ζ(x/µ;σ;n)
ζ(x/µ;σ;n) = ln(x/µ)/ln(σ)/√n = ±√(-ln(ϕ)/n) = probability exponent zeta(x/µ;sigma;n) deisenroth
probability factor phi(zeta) deisenroth = ϕ(ζ)
ϕ(ζ) = e^-(ζ^2)
probability factor phi(zeta,n) deisenroth = ϕ(ζ;n)
ϕ(ζ;n) = e^-(ζ^2/n) = e^-(ζ^2/n )
probability factor phi(n) = ϕ(n)
ϕ(n) = ϕ^n
probability factor phi cum (n) = ϕc(n)
ϕc(n) = 0,5*ϕ^n
probability factor product phi cum product (n) = ϕcp(n)
ϕcp(n) = (0,5*ϕc)^n
standard factor sigma deisenroth σ and s (standardfaktor sigma deisenroth)
σ = e^(2*ln(µari/µgeo))^0,5 = true standard factor sigma (wahrer standardfaktor sigma deisenroth) = σd
s = e^(2*ln(xari/xgeo))^0,5 = estimated standard factor sigma (geschätzter standardfaktor sigma deisenroth) = sd
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σ)^2)
µgeo = µari/e^(0,5*ln(σ)^2)
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^(-1/n) = ϕ^n
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(s;xari) = xari/e^(0,5*ln(s)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(s;xgeo) = xgeo*e^(0,5*ln(s)^2)
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi faktor normalverteilung ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi factor normal distribution ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
cumulative probability limit factor distribution function phi-cum deisenroth = ϕc(x/µ;σd;n) = 1/2*ϕd(x/µ;σc;n) and sigma-cum deisenroth = σc(ϕc;n) = σd^(±√(-ln(2*ϕc)/n))
cumulative probability limit factor distribution function sigma-cum(phi-cum) deisenroth = σc(ϕc;n;σd) = σd^(±√(-ln(2*ϕc)/n))
phi cumulative factor distribution function = ϕc = 0,5*ϕd(x/µ;σd;n)
phi cumulative factor distribution function = ϕc = 0,5*ϕd(x/µ;σd;n)
phi cumulative factor product distribution deisenroth = ϕcp;n = ϕcn
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.