probability factor sigma = σ(ϕ) = x(ϕ)/µ
σ(ϕ) = σd^±√(-ln(ϕ)/n) = x(ϕ)/µ
probability factor phi = ϕ(x/µ) = ϕ(σ)
ϕ(x/µ) = e^-(n*((ln(x/µ)/ln(σd))^2)
probability factor normal distribution sigma zeta phi deisenroth = σ(ϕ;n) = σd^±ζ(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µ ; σd=1,01
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σd;n) = ed^(-n*(ln(x/µ)/ln(σ))²)
sigma factor normal distribution σ(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µ= σd(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µgeo
sigma factor normal distribution σ(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µ= σd(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µgeo
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ζd(ϕ;n) = ±√(-ln(ϕ)/n)
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ζd(ϕ;n) = ±√(-ln(ϕ)/n)
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.