phi limit scattering factor distribution sigma deisenroth = σ(x/µ;ϕ;σd) = σd^±√(-ln(ϕ)/n) = x(ϕ;σd;n)/µ = x/µ
phi factor normal distribution ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi faktor normalverteilung ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
Impressum phi factor normal distribution ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σd;n)
ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σd^±√(-ln(ϕ)/n) = x(ϕ;n)/µ
x(ϕ;n) = µ∗σd^±√(-ln(ϕ)/n)
x(phi,sigma,µ,n) deisenroth
x(ϕ;σ;µ;n) = µ∗σd^±√(-ln(ϕ)/n)
confidence limit exponent zeta deisenroth
x(zeta,sigma,µ) deisenroth
x(ζ;σ;µ) = µ∗σ^±ζ
x(zeta,sigma,phi;µ) deisenroth
x(ζ;σ;ϕ;µ) = µ∗σd^±ζ(ϕ)
x(zeta,sigma,µ,n) deisenroth
x(ζ;σd;µ;n) = µ∗σd^(±ζ/√n)
probability exponent zeta deisenroth = ζ
ζ = ±√(-ln(ϕ)) = ln(x/µ)/ln(σd)
probability exponent zeta(phi) deisenroth = ζ(ϕ)
ζ(ϕ) = ±√(-ln(ϕ)) = ln(x/µ)/ln(σd) = probability exponent zeta(phi) deisenroth
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n)
ζ(ϕ;n) = ±√(-ln(ϕ)/n) = ln(x/µ)/ln(σd)/√n= probability exponent zeta(phi;n) deisenroth
probability exponent zeta(x/µ;sigma) deisenroth = ζ(x/µ;σd)
ζ(x/µ;σd) = ln(x/µ)/ln(σd) = ±√(-ln(ϕ)) = probability exponent zeta(x/µ;sigma) deisenroth
probability exponent zeta(x/µ;sigma;n) deisenroth = ζ(x/µ;σd;n)
ζ(x/µ;σd;n) = ln(x/µ)/ln(σd)/√n = ±√(-ln(ϕ)/n) = probability exponent zeta(x/µ;sigma;n) deisenroth
probability factor phi(zeta) deisenroth = ϕ(ζ)
ϕ(ζ) = e^-(ζ^2)
probability factor phi(zeta,n) deisenroth = ϕ(ζ;n)
ϕ(ζ;n) = e^-(ζ^2/n) = e^-(ζ^2/n )
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^(-1/n) = ϕ^n
standard factor sigma deisenroth σd and sd (standardfaktor sigma deisenroth)
σd = e^(2*ln(µari/µgeo))^0,5 = true standard factor sigma (wahrer standardfaktor sigma deisenroth) = σd
sd = e^(2*ln(xari/xgeo))^0,5 = estimated standard factor sigma (geschätzter standardfaktor sigma deisenroth) = sd
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2)
µgeo = µari/e^(0,5*ln(σd)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(s;xari) = xari/e^(0,5*ln(s)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
phi faktor normalverteilung ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi faktor normalverteilung ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi cumulative factor distribution function = ϕc = 0,5*ϕd(x/µ;σd;n)
cumulative probability limit factor distribution function phi-cum deisenroth = ϕc(x/µ;σd;n) = 1/2*ϕd(x/µ;σd;n) and sigma-cum deisenroth = σc(ϕ;n) = σd^(±√(-ln(2*ϕ)/n))
µgeo standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth (phi Faktor Normalverteilung)
µgeo standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=1,01
µgeo standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^(±√(-ln(ϕd)/n)) = x(ϕd;n)/µgeo ; σd=2
standard scattering probability limit factor normal distribution function σd(ϕd;n) ; σd =1,01 and monte carlo simulation
standard scattering probability limit factor normal distribution function σd(ϕd;n) ; σd=2 and monte carlo simulation
standard scattering probability limit coverage factor normal distribution function
standard scattering probability limit factor sigma deisenroth σd(ϕ;n)
sigma zeta phi diagram deisenroth
standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth ϕd(σd;n) and monte carlo simulation xgeo(n=1) and exp(abs(ln(xgeo(n=1))))
standard scattering probability limit factor normal distribution function deisenroth ϕd(σd;n) σd=1,01 and monte carlo simulation xgeo(n=3)*sd(n=3)
standard scattering probability limit factor normal distribution function deisenroth ϕd(σd;n) σd=2 and monte carlo simulation xgeo(n=3)*sd(n=3)
standard scattering probability limit factor normal distribution function deisenroth ϕd(σd;n) σd=2 and monte carlo simulation sd(n=3)
standard scattering probability limit factor normal function deisenroth ϕd(σd;n) σd=1,01 and monte carlo simulation xgeo(n=2)*sd(n=2)
pff = probability factor function deisenroth = ϕd(σd;n); n=1 and cff = cumulative factor function sigma-cum(phi-cum) deisenroth σc(ϕc;n) = σd^(±√(-ln(2*ϕc)/n)) and pdf = probability density function and cdf = cumulative density function
phi cum factor distribution deisenroth = ϕc = 0,5*ϕ(x/µ;σ;n)= 0,5*e^(-n*(ln(x/µ)/ln(σ))²) = 0,5*ϕd(x/µ;σd;n)
true cumulative probability limit product factor distribution function sigma-cum-product(phi-cum-product) deisenroth
ϕd(x/µ;n;σd) = e^(-n*((ln(x/µ))/(ln(σd))²) = true phi factor function deisenroth
σd(x/µ;ϕd;n;σd) = x/µ= σd^±√(-ln(ϕd)/n) = true sigma factor function deisenroth
ϕc(x/µ;n;σd) = 0,5*ϕd = 0,5*e^(-n*((ln(x/µ))/(ln(σd))²) = true cumulative phi factor = true phi cum factor deisenroth
σc(ϕc) = σd^(±√(-ln(2*ϕc)) = true cumulative sigma factor = true sigma cum factor deisenroth
ϕcp;n = ϕcn = true phi cum factor product function deisenroth
ϕcp(xn*sdn±2^0,5 >µ) = 0,5n = true phi cum factor product function deisenroth for xn*sdn±2^0,5 >µ
σcp(ϕcp;n;σd) = σd^(±√(-ln(2^n*ϕcp)/n)) = true sigma cum factor product deisenroth
xn*sd±2^0,5 = µn(ϕcp;n;xn;sdn±2^0,5) = estimated sigma cum product factor deisenroth
sd±2^0,5 = estimated sample variance factor deisenroth = (e^(2*ln(xan/xgn))^0,5)2^0,5= s±2^0,5 = sigma variance factor = sv±1
sv±1= (e^(2*ln(xan/xgn))^0,5)2^0,5= sd±2^0,5 = sigma variance factor deisenroth
µn(ϕcp;n;σd±1;x)= x*σd^(±√(-ln(2^n*ϕcp)/n)) = true sigma cum factor product confidence interval deisenroth
µn(ϕcp;n;sdn±2^0,5;xn)= xn*sdn±2^0,5= estimated sigma cum factor product confidence interval deisenroth
σd±1= true standard factor deisenroth = e^(2*ln(µari/µ))^0,5= σ±1
sd±1= estimated standard factor deisenroth = e^(2*ln(xari/xgeo))^0,5= s±1
sd±2^0,5= estimated sigma cum product factor deisenroth = (e^(2*ln(xan/xgn))^0,5)2^0,5= s±2^0,5= sp±1
sp±1= estimated sigma cum product factor deisenroth = (e^(2*ln(xan/xgn))^0,5)2^0,5
µari = true arithmetic mean
µ = true geometric mean = µgeo
xn= estimated geometric mean = xgeon =xgn
xarin= estimated arithmetic mean = xan
ϕ(n)= ϕn = probability multiplication factor deisenroth phi(n)
phi cum factor product distribution deisenroth = ϕcp;n = ϕcn
phi factor function deisenroth = pff = ϕ(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
pff = probability factor function deisenroth = ϕ(σd;n=2)
pff = probability factor function deisenroth = ϕd(σd;n) ; (n=1) and monte carlo simulation xgeo(n=1) and pdf = probability density function (n=2) and cdf = cumulative density function (n=2)
pff = probability factor function deisenroth = ϕd(σd;n); (n=2) and monte carlo simulation xgeo(n=2) and pdf = probability density function (n=2) and cdf = cumulative density function (n=2)
pff = probability factor function deisenroth= ϕd(σd;n) ; (n=2) and monte carlo simulation xgeo(n=2)*sd(n=2) and xgeo/sd and pdf = probability density function (n=2) and cdf = cumulative density function (n=2)
pff = probability factor function deisenroth = ϕd(σd;n) ; n=56 and monte carlo simulation xgeo*sd^(1/n^0,5) and xgeo/sd^(1/n^0,5) and pdf = probability density function and cdf = cumulative density function
pff = probability factor function deisenroth = ϕd(σd^±1;n;µgeo) and pdf = probability density function = f(±(ln(σd));n;µari) and cdf = cumulative density function deisenroth = ϕc(σd^±1;n;µgeo)
confidence limit factor sigma xgeo = σxgeo = Vertrauensgrenzfaktor xgeo
question:
σxgeo(ϕd;n)=?
hypothesis:
σd(ϕd;n) = x(ϕd;n)/µgeo = σd^±√(-ln(ϕd)/n)
σxgeo(ϕd;n) = xgeo(ϕd;n)/µgeo = σd^-(((√-ln(ϕd))*-2*ϕd)/n^0,5)
test:
monte carlo simulation excel xgeo(n)*sd(n); (N = 10000)
excel random generator standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth (Standardfaktor Normalverteilung Funktion sigma zeta phi Deisenroth)
x(ϕd)/µgeo = ?
x(ϕd)/µgeo = σd^±√(-ln(ϕd)/n=1)
= σd^((GANZZAHL((EXP(LN((0,5+ZUFALLSZAHL())))))-0,5)*2)*((-LN(ZUFALLSZAHL()))^0,5))
standard scattering probability limit factor normal distribution function sigma zeta phi deisenroth
σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
x(ϕd;n) = µgeo∗σd^±√(-ln(ϕd)/n)
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
ζd(ϕd;n) = √(-ln(ϕd)/n)
ϕd(ζd;n) = e^-ζd(ϕd;n)^2 = e^(-ln(ϕd)/n)
ϕd(x;n) = ϕd(x;n=1)^n
probability factor sigma deisenroth = σd(ϕd;n)
σd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo
x(ϕd;n=1) = µgeo∗σd^±√(-ln(ϕd))
x(ϕd;n>1) = µgeo∗σd^±√(-ln(ϕd)/n)
probability factor sigma(phi,n) deisenroth = σd(ϕd;n)
σd(ϕd;n) = σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo
x(ϕd;n=1) = µgeo∗σd^±√(-ln(ϕd))
x(ϕd;n>1) = µgeo∗σd^±√(-ln(ϕd)/n)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ) = σ^±√(-ln(ϕ)/n) = x(ϕ)/µ
x(ϕ) = µ∗σ^±√(-ln(ϕ)/n)
probability factor sigma(phi) deisenroth = σ(ϕ)
σ(ϕ) = σ^±√(-ln(ϕ)) = x(ϕ)/µ
x(ϕ) = µ∗σ^±√(-ln(ϕ))
probability factor phi deisenroth = ϕd(x;n)
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
probability factor phi deisenroth = ϕ(x;n)
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
probability factor phi(x;n) deisenroth = ϕ(x;n)
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
probability factor phi deisenroth = ϕ(x)
ϕ(x) = e^(-((ln(x/µ))/(ln(σ))²)
probability factor phi(x) deisenroth = ϕ(x)
ϕ(x) = e^(-((ln(x/µ))/(ln(σ))²)
probability factor phi deisenroth = ϕ(x/µ;σ)
ϕ(x/µ;σ) = e^(-((ln(x/µ))/(ln(σ))²)
probability factor phi deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*((ln(x/µ))/(ln(σ))²)
probability factor phi(x;n) deisenroth = ϕd(x;n)
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
ϕd(x;n) = ϕd(x; n=1)^n
probability factor phi(n) deisenroth = ϕd(n)
ϕd(n) = ϕd^n
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^n
probability exponent zeta deisenroth = ζd(ϕd;n)
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
probability exponent zeta(phi;n) deisenroth = ζd(ϕd;n)
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
probability exponent zeta(phi;n) deisenroth = ζ(ϕ;n)
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
probability exponent zeta(phi) deisenroth ζd(ϕd)
ζd(ϕd) = ±√(-ln(ϕd))
probability exponent zeta(phi) deisenroth ζ(ϕ)
ζ(ϕ) = ±√(-ln(ϕ))
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2)
µgeo = µari/e^(0,5*ln(σd)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd;xari) = xari/e^(0,5*ln(sd)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
standard normal factor sigma deisenroth σd and sd (Standardnormalfaktor Sigma Deisenroth σd und sd)
σd = e^(2*ln(µari/µgeo))^0,5 = true standard normal factor deisenroth (wahrer Standardnormalfaktor Sigma Deisenroth)
sd = e^(2*ln(xari/xgeo))^0,5 = estimated standard normal factor deisenroth (geschätzter Standardnormalfaktor Sigma Deisenroth)
true standard scattering probability limit normal factor sigma deisenroth σd and estimated standard scattering probability limit normal factor sigma deisenroth sd (standard normalfaktor sigma deisenroth)
true standard normal mean factor deisenroth µd (wahrer Standard Mittelwertfaktor Deisenroth µd)
estimated standard normal mean factor deisenroth xd (geschätzter Standard Mittelwertfaktor Deisenroth xd)
xd = xari/xgeo
standard normal probability limit base sigma deisenroth (standard Normalfaktor sigma deisenroth)
µd = µari/µgeo
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit base sigma deisenroth (Standardfaktor sigma deisenroth)
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard normal mean function sigma deisenroth (standard Mittelwertfunktion sigma deisenroth)
standard normal mean function sigma deisenroth (Mittelwert Standardfunktion sigma deisenroth)
standard probability limit factor sigma deisenroth (Standardwahrscheinlichkeitsfaktor sigma deisenroth)
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard probability limit exponent zeta deisenroth (Standardwahrscheinlichkeitsexponent zeta deisenroth)
ζd(ϕd=0,368;n=1) = 1
standard probability limit factor phi deisenroth (standardwahrscheinlichkeit phi deisenroth)
ϕd(ζd=1;n=1) = e^-(ζd²/n) = e^-1² = 0,368
standard sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard zeta deisenroth
ζd(ϕd=0,368;n=1) = 1
standard phi deisenroth
ϕd(ζd=1;n=1) = e^-(ζd²/n) = e^-1² = 0,368
confidence limit base deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
confidence limit factor sigma deisenroth
σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5)
confidence limit exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n)
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
confidence limit factor phi deisenroth
ϕd(σd;n) = e^(-n*((ln(x(ϕd;n)/µgeo))/(ln(σd))²)
standard confidence limit factor sigma deisenroth
σd(µari/µgeo) = e^(2∗ln(µari/µgeo))^0¸5
standard confidence limit exponent zeta deisenroth
ζd(ϕd=0,368;n=1) = 1
standard confidence limit factor phi deisenroth
ϕd(ζd=1;n=1) = e^-(ζd²/n) = e^-1² = 0,368
scattering factors (Streufaktoren)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standardstreufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standardstreufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer Aristreufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter Aristreufaktor)
σp = σd(ϕd;n)*x/µgeo = true scattering factor product (wahres Streufaktorprodukt)
sp = sd*xgeo/µgeo = estimated scattering factor product (geschätztes Streufaktorprodukt)
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
σd(n,%) =x(n,%)/µgeo =σd^(ζd(%)/n^0,5)= true x confidence limit factor sigma deisenroth (wahrer µgeo Vertrauensgrenzfaktor)
σd(n,%)=µgeo(n,%)/µgeo=σd^(ζd(%)/n^0,5)=true µgeo confidence limit factor sigma deisenroth (wahre µgeo Vertrauensgrenze)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ;n)/µ = Vertrauensgrenzfaktor
extreme limit factors (extreme Grenzfaktoren)
sd(n,100%) = sd^±(ζd(100%)/n^0,5) = sd^(±0/n^0,5) = 1 = xgeo(n,100%)/xgeo(100%) = 1
sd(n,0%) = sd^±(ζd(0%)/n^0,5) = sd^±(∞/n^0,5) = ∞/1 and 1/∞ = ∞/xgeo(100%) and xgeo(100%)/∞=0
σd(n,100%) = 1
σd(n,0%) = 0 and ∞
σd(36,8%;n) = σd^(1/n^0,5)
related tags
factor normal distribution - Faktor Normalverteilung
factor distribution - Faktor Verteilung - Faktorverteilung
factor function - Faktor Funktion - Faktorfunktion
standard normal factor distribution function - standanrd normal Faktorverteilungsfunktion - standard normal Faktorfunktion - Standard Normal Faktor Verteilung Funktion
factor probability function - Fakor Wahrscheinlichkeitsfunktion - Faktorwahrscheinlichkeitsfunktion
probability factor function - Wahrscheinlichkeitsfaktorfunktion
probability limit factor function - Wahrscheinlichkeitsgrenzfaktorfunktion - Wahrscheinlichkeit Grenzfaktor Funktion - Wahrscheinlichkeitsgrenze -
limit factor function - Grenzfaktorfunktion
limit function - Grenzfunktion - Grenze Funktion - Grenz Funktion
confidence limit factor - Vertrauensgrenzfaktor - Vertrauen Grenzfaktor
standard probability limit normal factor - standard normal Wahrscheinlichkeitsfaktor - Standardfaktor - Standardnormalfaktor - Standardbasis - Standardnormalbasis - Normalbasis - standard normal Basis - standard normalbase - standard normal base -
standard probability limit normal base - standard normal Wahrscheinlichkeitsbasis - Standard Normal Wahrscheinlichkeit Basis
standard probability limit normal exponent - standard normal Wahrscheinlichkeitsexponent - wahrscheinlichkeitsgrenzfaktor -
standard probability limit factor normal distribution function - standard normal Faktor Wahrscheinlichkeitsfunktion
normal standard limit factor - Normal Standard Grenzfaktor - Standardgrenzfaktor - Normal Standard Grenze Faktor
factor normal distribution - Faktor Normal Verteilung - Faktor Verteilung - Faktorverteilung - Normalfaktorverteilung
base factor distribution - Basisfaktor Verteilung - Basis Faktor Verteilung - Basis Faktor Normalverteilung
base probability function - Basiswahrscheinlichkeit Funktion - Basis Wahrscheinlichkeit Funktion - Basis Wahrlichkeitsfunktion - Basiswahrscheinlichkeitsfunktion - Basisfunktion - Grenzfaktorbasis - Faktorbasis - Fakterfunktion - Faktorwahrscheinlichkeitsfunktion - Standardfaktorfunktion -Standardwahrscheinlichkeitsfunktion - Standardfaktornormalfunktion - Standardfaktorverteilung, Standardnormalfaktorverteilung, Standardnormalfaktorfunktion - Normalfaktofunktion - Faktor Normalfunktion -Normalfaktorwahrscheinlichkeit - Normalfaktorfunktion - Standard Normalfaktor Funktion - Standard Faktor Normal Funktion - Standard Faktor Normal Verteilung - Standard Normalfaktor Funktion - Basisfaktorfunktion - Basisfaktor Funktion - Faktorbasisfunktion - Faktor Basis Exponent Funktion - Faktor Standardnormalverteilung - Standardfaktor Normalverteilung - Standard Faktor Normalverteilung - Standard Faktor Verteilung - Normal Standard Faktor Verteilung - Standard Faktor Normalverteilung - Standardnormalwahrscheinlichkeitsfaktor - Normalwahrscheinlichkeitsfaktor - Standard Faktor Normalwahrscheinlichkeit - Normalwahrscheinlichkeitfunktion - standard Normalfaktor sigma deisenroth - standard normal Faktor sigma deisenroth - wahres standard normal arithmetisches Mittel µari - wahres standard normal geometrisches Mittel µgeo - geschätztes standard normal arithmetisches Mittel xari - geschätztes standard normal geometrisches Mittel xgeo - geometrisch - arithmetisch - standard normal Mittelwertfunktion sigma deisenroth - standard normal Mittelfunktion sigma deisenroth - standard normal Mittel Funktion - standard normal Mittelwert Funktion - geometrisches Normalmittel µgeo und xgeo - arithmetisches Normalmittel µari und xari - geometrisches Standardmittel µgeo und xgeo - arithmetisches Standardmittel µari und xari - standard normal mean µgeo and xgeo - standard normal mean µari and xari - standard normal Mittelfaktor - standard normal mean factor - Standardmittelfaktor - standard mean factor - standardnormal Faktor - Standardnormalfaktor - normalstandard Faktor - Normalstandardfaktor - Standard Faktor Wahrscheinlichkeitsverteilung - Standardwahrscheinlichkeit; Wahrscheinlichkeitsfaktorintervall = probability factor interval, scattering factor interval = Streufaktorintervall, Faktor Intervall; Faktorintervall = factor interval; Intervallfaktor, Strueproduktgrenze, Streuprodukt Grenze, Streuproduktfaktor, Streuproduktgrenzfaktor
ϕd(x/µ;n;σd) = e^(-n*((ln(x/µ))/(ln(σd))²) = phi factor deisenroth = phi Faktor deisenroth
σd(x/µ;ϕd;n;σd) = x/µ= σd^±√(-ln(ϕd)/n) = sigma factor deisenroth = sigma faktor deisenroth
ϕc = 0,5*ϕd = cumulative probability factor = phi-cum-factor deisenroth = kumulierter Wahrscheinlichkeitsfaktor deisenroth
σc(ϕc) = σd^(±√(-ln(2*ϕc))= cumulative scattering factor = sigma-cum-factor = kumulierter sigma Streufaktor deisenroth
ϕcp;n = ϕcn = phi-cum-product = kumuliertes Wahrscheinlichkeitsprodukt deisenroth
ϕcp(xn*sdn<µ) = (0,5)n = phi-cum-product for xn*sdn<µ = kumuliertes Wahrscheinlichkeitsprodukt für xn*sdn<µ
σcp(ϕcp;n;σd) = σd^(±√(-ln(2^n*ϕcp)/n)) = sigma-cum-product-factor = sigma-kum-produkt-faktor deisenroth
xn*sd±2^0,5 ≈ µn(ϕcp;n;xn;sdn±1) = estimated scattering product limit deisenroth = geschätztes Streufaktorproduktgrenze
µn(ϕcp;n;σd±1;x)= x*σd^(±√(-ln(2^n*ϕcp)/n)) = true-sigma-factor confidence interval deisenroth = wahrer-sigma-faktor Vertrauensintervall deisenroth
µn(ϕcp;n;sdn±2^0,5;xn)= xn*sdn±2^0,5= estimated sigma-factor confidence interval deisenroth = geschätzter-sigma-faktor Vertrauensintervall deisenroth
see also
probability limit factor σd(ϕd;n)
probability factor sigma deisenroth σd(ϕd;n)
probability factor phi deisenroth ϕd(xgeo;n)
probability exponent zeta deisenroth ζd
probability factor sigma deisenroth σd
probability limit base factor sigma deisenroth σd
standard probability limit factor sigma deisenroth σd
standard limit factor sigma deisenroth σd
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
confidence limit base σd
scattering factor analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
xari(xi) = 1/n*(x1+x2+ ....+xn) = estimated arithmetic mean
xari(sd) = xgeo*e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
σd (sd) = standard probability factor sigma Deisenroth
σd (sd) = Standard - Wahrscheinlichkeitsfaktor sigma Deisenroth
scattering factor analysis (Wahrscheinlichkeitsfaktor - Analyse)
probability limit exponent zeta deisenroth
ζdi(ϕdi;ni) = ±√(-ln(ϕdij)/ni)= true probablitiy limit exponent zeta deisenroth
Zdi(Pdi;ni) = ±√(-ln(Pdi)/ni)= estimated probablitiy limit exponent zeta deisenroth
probability exponent zeta deisenroth
ζd(ϕd;n) = ±√(-ln(ϕd)/n) = true probablitiy exponent zeta deisenroth
Zd(Pd;n) = ±√(-ln(Pd)/n)= estimated probablitiy exponent zeta deisenroth
probability phi deisenroth
ϕd(ζd) = e^-(ζd²) = true probability phi deisenroth
Pd(Zd) = e^-(Zd²) = estimated probability phi deisenroth
probability limit phi deisenroth
ϕdi(ζdi) = e^-(ζdi²) = true probability limit phi deisenroth
Pdi(Zdi) = e^-(Zdi²) = estimated probability limit phi deisenroth
Confidence limit factor sigma deisenroth
σdi(ϕdi;ni) = σdi^√(-ln(ϕdi)/ni) = true confidence limit factor sigma deisenroth i
sdi(Pdi;ni) = sdi^(√(-ln(Pdij)/ni) = estimated confidence limit factor sigma deisenroth ij
σdi(ni,%) = σdi^(√(-ln(%)/ni) = true confidence limit factor sigma deisenroth i
sdi(ni,%) = sdi^(√(-ln(%)/ni)) = estimated confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = confidence limit exponent zeta deisenroth
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
standard probability limit factor sigma deisenroth σd
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard probability limit factor sigma deisenroth
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard probability limit factor sigma deisenroth
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.