Wiki

Cell division

From Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Cell_division This page was last modified on 5 February 2010 at 08:40.

This includes a list of references or external links, but its sources remain unclear because it has insufficient inline citations. Please help to improvethis article by introducing more precise citations where appropriate. (August 2007)

Cell division is the process by which a parent cell divides into two or more daughter cells. Cell division is usually a small segment of a larger cell cycle. This type of cell division in eukaryotes is known as mitosis, and leaves the daughter cell capable of dividing again. The corresponding sort of cell division in prokaryotes is known as binary fission. In another type of cell division present only in eukaryotes, called meiosis, a cell is permanently transformed into a gamete and cannot divide again until fertilization. Right before the parent cell splits, it undergoes DNA replication.

For simple unicellular organisms[nb 1] such as the amoeba, one cell division is equivalent to reproduction-- an entire new organism is created. On a larger scale, mitotic cell division can create progeny from multicellular organisms, such as plants that grow from cuttings. Cell division also enables asexually reproducing organisms to develop from the one-celledzygote, which itself was produced by cell division from gametes. And after growth, cell division allows for continual construction and repair of the organism.[1] A human being's body experiences about 10,000 trillion cell divisions in a lifetime.[2]

The primary concern of cell division is the maintenance of the original cell's genome. Before division can occur, the genomic information which is stored in chromosomes must be replicated, and the duplicated genome separated cleanly between cells. A great deal of cellular infrastructure is involved in keeping genomic information consistent between "generations".

Variants

Cells are classified into two categories: simple, non-nucleatedprokaryotic cells, and complex, nucleated eukaryotic cells. By dint of their structural differences, eukaryotic and prokaryoticcells do not divide in the same way.

Furthermore,the pattern of cell division that transforms eukaryotic stem cells into gametes (sperm in males or ova in females) is different from that of eukaryotic somatic (non-germ) cells.

Degradation

Multicellular organisms replace worn-out cells through cell division. In some animals, however, cell division eventually halts. In humans this occurs on average, after 52 divisions, known as the Hayflick limit. The cell is then referred to as senescent. Cells stop dividing because the telomeres, protective bits of DNA on the end of a chromosome required for replication, shorten with each copy, eventually being consumed, as described in the article on telomere shortening. Cancer cells, on the other hand, are not thought to degrade in this way, if at all. An enzyme called telomerase, present in large quantities in cancerous cells, rebuilds the telomeres, allowing division to continue indefinitely.

Notes

    1. ^ Single cell organisms. See discussion within lead of the article on microorganism.

Other notes

    1. ^ Maton, Anthea; Hopkins, Jean Johnson, Susan LaHart, David, Quon Warner, David, Wright, Jill D (1997). Cells: Building Blocks of Life. New Jersey: Prentice Hall. pp. 70–74. ISBN 0-13423476-6.

    2. ^ Quammen, David (April 2008). "Contagious cancer: The evolution of a killer". Harper's 316 (1895): 42..

References

    1. Morgan DO. (2007) "The Cell Cycle: Principles of Control" London: New Science Press.

    2. J.M.Turner Fetus into Man (1978, 1989). Harvard University Press. ISBN 0-674-30692-9

  1. Cell division: binary fission and mitosis

External links

vde