Science and Engineering PRACTICES

"Engaging in the practices of science helps students understand how scientific knowledge develops; such direct involvement gives them an appreciation of the wide range of approaches that are used to investigate, model, and explain the world." 

WHY PRACTICES?

Engaging in the practices of science helps students understand how scientific knowledge develops; such direct involvement gives them an appreciation of the wide range of approaches that are used to investigate, model, and explain the world. Engaging in the practices of engineering likewise helps students understand the work of engineers, as well as the links between engineering and science. Participation in these practices also helps students form an understanding of the crosscutting concepts and disciplinary ideas of science and engineering; moreover, it makes students’ knowledge more meaningful and embeds it more deeply into their worldview.

The actual doing of science or engineering can also pique students’ curiosity, capture their interest, and motivate their continued study; the insights thus gained help them recognize that the work of scientists and engineers is a creative endeavor—one that has deeply affected the world they live in. Students may then recognize that science and engineering can contribute to meeting many of the major challenges that confront society today, such as generating sufficient energy, preventing and treating disease, maintaining supplies of fresh water and food, and addressing climate change. Any education that focuses predominantly on the detailed products of scientific labor—the facts of science—without developing an understanding of how those facts were established or that ignores the many important applications of science in the world misrepresents science and marginalizes the importance of engineering.

Understanding How Scientists Work

The idea of science as a set of practices has emerged from the work of historians, philosophers, psychologists, and sociologists over the past 60 years. This work illuminates how science is actually done, both in the short term (e.g., studies of activity in a particular laboratory or program) and historically (studies of laboratory notebooks, published texts, eyewitness accounts). Seeing science as a set of practices shows that theory development, reasoning, and testing are components of a larger ensemble of activities that includes networks of participants and institutions, specialized ways of talking and writing, the development of models to represent systems or phenomena, the making of predictive inferences, construction of appropriate instrumentation, and testing of hypotheses by experiment or observation.

Our view is that this perspective is an improvement over previous approaches in several ways. First, it minimizes the tendency to reduce scientific practice to a single set of procedures, such as identifying and controlling variables, classifying entities, and identifying sources of error. This tendency overemphasizes experimental investigation at the expense of other practices, such as modeling, critique, and communication. In addition, when such procedures are taught in isolation from science content, they become the aims of instruction in and of themselves rather than a means of developing a deeper understanding of the concepts and purposes of science.

Second, a focus on practices (in the plural) avoids the mistaken impression that there is one distinctive approach common to all science—a single “scientific method”—or that uncertainty is a universal attribute of science. In reality, practicing scientists employ a broad spectrum of methods, and although science involves many areas of uncertainty as knowledge is developed, there are now many aspects of scientific knowledge that are so well established as to be unquestioned foundations of the culture and its technologies. It is only through engagement in the practices that students can recognize how such knowledge comes about and why some parts of scientific theory are more firmly established than others.

Third, attempts to develop the idea that science should be taught through a process of inquiry have been hampered by the lack of a commonly accepted definition of its constituent elements. Such ambiguity results in widely divergent pedagogic objectives—an outcome that is counterproductive to the goal of common standards.

The focus here is on important practices, such as modeling, developing explanations, and engaging in critique and evaluation (argumentation), that have too often been underemphasized in the context of science education. In particular, we stress that critique is an essential element both for building new knowledge in general and for the learning of science in particular. Traditionally, K-12 science education has paid little attention to the role of critique in science. However, as all ideas in science are evaluated against alternative explanations and compared with evidence, acceptance of an explanation is ultimately an assessment of what data are reliable and relevant and a decision about which explanation is the most satisfactory. Thus knowing why the wrong answer is wrong can help secure a deeper and stronger understanding of why the right answer is right. Engaging in argumentation from evidence about an explanation supports students’ understanding of the reasons and empirical evidence for that explanation, demonstrating that science is a body of knowledge rooted in evidence.

How the Practices Are Integrated into Both Inquiry and Design

One helpful way of understanding the practices of scientists and engineers is to frame them as work that is done in three spheres of activity, as shown in the figure below. In one sphere, the dominant activity is investigation and empirical inquiry. In the second, the essence of work is the construction of explanations or designs using reasoning, creative thinking, and models. And in the third sphere, the ideas, such as the fit of models and explanations to evidence or the appropriateness of product designs, are analyzed, debated, and evaluated. In all three spheres of activity, scientists and engineers try to use the best available tools to support the task at hand, which today means that modern computational technology is integral to virtually all aspects of their work.

At the left of the figure are activities related to empirical investigation. In this sphere of activity, scientists determine what needs to be measured; observe phenomena; plan experiments, programs of observation, and methods of data collection; build instruments; engage in disciplined fieldwork; and identify sources of uncertainty. For their part, engineers engage in testing that will contribute data for informing proposed designs. A civil engineer, for example, cannot design a new highway without measuring the terrain and collecting data about the nature of the soil and water flows.

The activities related to developing explanations and solutions are shown at the right of the figure. For scientists, their work in this sphere of activity is to draw from established theories and models and to propose extensions to theory or create new models. Often, they develop a model or hypothesis that leads to new questions to investigate or alternative explanations to consider. For engineers, the major practice is the production of designs. Design development also involves constructing models, for example, computer simulations of new structures or processes that may be used to test a design under a range of simulated conditions or, at a later stage, to test a physical prototype. Both scientists and engineers use their models—including sketches, diagrams, mathematical relationships, simulations, and physical models—to make predictions about the likely behavior of a system, and they then collect data to evaluate the predictions and possibly revise the models as a result.

Between and within these two spheres of activity is the practice of evaluation, represented by the middle space. Here is an iterative process that repeats at every step of the work. Critical thinking is required, whether in developing and refining an idea (an explanation or a design) or in conducting an investigation. The dominant activities in this sphere are argumentation and critique, which often lead to further experiments and observations or to changes in proposed models, explanations, or designs. Scientists and engineers use evidence-based argumentation to make the case for their ideas, whether involving new theories or designs, novel ways of collecting data, or interpretations of evidence. They and their peers then attempt to identify weaknesses and limitations in the argument, with the ultimate goal of refining and improving the explanation or design.

In reality, scientists and engineers move, fluidly and iteratively, back and forth among these three spheres of activity, and they conduct activities that might involve two or even all three of the modes at once. The function of Figure 3-1 is therefore solely to offer a scheme that helps identify the function, significance, range, and diversity of practices embedded in the work of scientists and engineers. Although admittedly a simplification, the figure does identify three overarching categories of practices and shows how they interact.

Source: A Framework For K-12 Science Education

Sensemaking and the Science Practices

The practices work with one another to help us understand how and why the world works and for engineering how to design solutions to problems. Focusing on the larger investigation context leads to authentic and purposeful reasoning and connected practices. Looking back at our questions informing the sensemaking process, we can see how thoughtful work can happen in many places: during initial attempts to understand phenomena, during efforts to make sense of patterns in empirically related phenomena and related scientific theories, and in applying the revised theories and models to explain and predict other phenomena in the world.

Source: Helping Students Make Sense of the World p.18

Science Practices Diagram

Grouping the 8 Science Practices into Investigating, Sensemaking, and Critiquing

When thinking about the science practices, we find that it can be overwhelming (particularly for those new to NGSS) to think about each of the eight practices. In addition, the science practices are not independent, but rather they overlap and work synergistically in classrooms (Bell, Bricker, Tzou, Lee & Van Horne, 2012). Consequently, we developed 3 groups for the practices: Investigating Practices, Sensemaking Practices and Critiquing Practices (McNeill, Katsh-Singer & Pelletier, 2015). 

The Investigating Practices focus on asking questions and conducting experiments about the Natural World. The product of those investigations is Data. The Sensemaking Practices analyze the data looking for patterns and relationships in order to develop Explanations and Models. A key element of science, which is often left out of k-12 instruction, is critique. The Critiquing Practices focus on evaluating and arguing about the different explanations and models in order to develop a stronger understanding of the natural world. 

The table below illustrates one way to group the eight science practices into – Investigating Practices, Sensemaking Practices and Critiquing Practices

This is an oversimplification, because any one practice (such as modeling) can fall into a different category depending on how it is being used in a lesson. However, we feel these groupings can be helpful to identify areas that need more focus in science curriculum and/or instruction (e.g. sensemaking or critiquing) as well as can be productive conversation starters for shifting science instruction to align more closely with the ambitious goals in NGSS. 

Source: Instructional Leadership for Science Practices

Commonalities Among the Practices in Science, Math, and ELA