ETS1: Engineering Design

How do engineers solve problems?

The design process—engineers’ basic approach to problem solving—involves many different practices. They include problem definition, model development and use, investigation, analysis and interpretation of data, application of mathematics and computational thinking, and determination of solutions. These engineering practices incorporate specialized knowledge about criteria and constraints, modeling and analysis, and optimization and trade-offs. 

ETS1.A: DEFINING AND DELIMITING AN ENGINEERING PROBLEM 

What is a design for? What are the criteria and constraints of a successful solution? 

The engineering design process begins with the identification of a problem to solve and the specification of clear goals, or criteria, that the final product or system must meet. Criteria, which typically reflect the needs of the expected end-user of a technology or process, address such things as how the product or system will function (what job it will perform and how), its durability, and its cost. Criteria should be quantifiable whenever possible and stated so that one can tell if a given design meets them.

Engineers must contend with a variety of limitations, or constraints, when they engage in design. Constraints, which frame the salient conditions under which the problem must be solved, may be physical, economic, legal, political, social, ethical, aesthetic, or related to time and place. In terms of quantitative measurements, constraints may include limits on cost, size, weight, or performance, for example. And although constraints place restrictions on a design, not all of them are permanent or absolute.

Source: NRC Framework

ETS1.B: DEVELOPING POSSIBLE SOLUTIONS 

What is the process for developing potential design solutions?

The creative process of developing a new design to solve a problem is a central element of engineering. This process may begin with a relatively open-ended phase during which new ideas are generated both by individuals and by group processes such as brainstorming. Before long, the process must move to the specification of solutions that meet the criteria and constraints at hand. Initial ideas may be communicated through informal sketches or diagrams, although they typically become more formalized through models. The ability to build and use physical, graphical, and mathematical models is an essential part of translating a design idea into a finished product, such as a machine, building, or any other working system. Because each area of engineering focuses on particular types of systems (e.g., mechanical, electrical, biotechnological), engineers become expert in the elements that such systems need. But whatever their fields, all engineers use models to help develop and communicate solutions to design problems.

Models allow the designer to better understand the features of a design problem, visualize elements of a possible solution, predict a design’s performance, and guide the development of feasible solutions (or, if possible, the optimal solution). A physical model can be manipulated and tested for parameters of interest, such as strength, flexibility, heat conduction, fit with other components, and durability. Scale models and prototypes are particular types of physical models. Graphical models, such as sketches and drawings, permit engineers to easily share and discuss design ideas and to rapidly revise their thinking based on input from others.

Mathematical models allow engineers to estimate the effects of a change in one feature of the design (e.g., material composition, ambient temperature) on other features, or on performance as a whole, before the designed product is actually built. Mathematical models are often embedded in computer-based simulations. Computer-aided design (CAD) and computer-aided manufacturing (CAM) are modeling tools commonly used in engineering.

Data from models and experiments can be analyzed to make decisions about modifying a design. The analysis may reveal performance information, such as which criteria a design meets, or predict how well the overall designed system or system component will behave under certain conditions. If analysis reveals that the predicted performance does not align with desired criteria, the design can be adjusted.

Source: NRC Framework

ETS1.C: OPTIMIZING THE DESIGN SOLUTION 

How can the various proposed design solutions be compared and improved?

Multiple solutions to an engineering design problem are always possible because there is more than one way to meet the criteria and satisfy the constraints. But the aim of engineering is not simply to design a solution to a problem but to design the best solution. Determining what constitutes “best,” however, requires value judgments, given that one person’s view of the optimal solution may differ from another’s.

Optimization often requires making trade-offs among competing criteria. For example, as one criterion (such as lighter weight) is enhanced, another (such as unit cost) might be sacrificed (i.e., cost may be increased due to the higher cost of lightweight materials). In effect, one criterion is devalued or traded off for another that is deemed more important. When multiple possible design options are under consideration, with each optimized for different criteria, engineers may use a trade-off matrix to compare the overall advantages and disadvantages of the different proposed solutions.

The decision as to which criteria are critical and which ones can be traded off is a judgment based on the situation and the perceived needs of the end-user of the product or system. Because many factors—including environmental or health impacts, available technologies, and the expectations of users—change over time and vary from place to place, a design solution that is considered optimal at one time and place may appear far from optimal at other times and places. Thus different designs, each of them optimized for different conditions, are often needed.

Source: NRC Framework

K-12 Progressions for ETS1: Engineering Design

ETS1.pdf

Additional Resources: